Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How video gaming can be beneficial for the brain

30.10.2013
Brain regions can be specifically trained: Video gaming causes increases in the brain regions responsible for spatial orientation, memory formation and strategic planning as well as fine motor skills.

This has been shown in a new study conducted at the Max Planck Institute for Human Development and Charité University Medicine St. Hedwig-Krankenhaus. The positive effects of video gaming may also prove relevant in therapeutic interventions targeting psychiatric disorders.

In order to investigate how video games affect the brain, scientists in Berlin have asked adults to play the video game “Super Mario 64” over a period of two months for 30 minutes a day. A control group did not play video games. Brain volume was quantified using magnetic resonance imaging (MRI).

In comparison to the control group the video gaming group showed increases of grey matter, in which the cell bodies of the nerve cells of the brain are situated. These plasticity effects were observed in the right hippocampus, right prefrontal cortex and the cerebellum.

These brain regions are involved in functions such as spatial navigation, memory formation, strategic planning and fine motor skills of the hands. Most interestingly, these changes were more pronounced the more desire the participants reported to play the video game.

“While previous studies have shown differences in brain structure of video gamers, the present study can demonstrate the direct causal link between video gaming and a volumetric brain increase. This proves that specific brain regions can be trained by means of video games”, says study leader Simone Kühn, senior scientist at the Center for Lifespan Psychology at the Max Planck Institute for Human Development.

Therefore Simone Kühn and her colleagues assume that video games could be therapeutically useful for patients with mental disorders in which brain regions are altered or reduced in size, e.g. schizophrenia, post-traumatic stress disorder or neurodegenerative diseases such as Alzheimer’s dementia.

“Many patients will accept video games more readily than other medical interventions”, adds the psychiatrist Jürgen Gallinat, co-author of the study at Charité University Medicine St. Hedwig-Krankenhaus. Further studies to investigate the effects of video gaming in patients with mental health issues are planned. A study on the effects of video gaming in the treatment of post-traumatic stress disorder is currently ongoing.

Original Publication
Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., Gallinat, J. (2013). Playing Super Mario induces structural brain plasticity: Grey matter changes resulting from training with a commercial video game. Molecular Psychiatry. Advance online publication.

doi: 10.1038/mp.2013.120.

Max Planck Institute for Human Development
The Max Planck Institute for Human Development was funded in 1963 in Berlin and is an interdisciplinary research institute dedicated to the study of human lifespan development and education. The Institute is part of the Max-Planck-Society, a leading organization for basic sciences in Europe.

Kerstin Skork | Max-Planck-Institut
Further information:
http://www.mpib-berlin.mpg.de/en/media/2013/10/how-video-gaming-can-be-beneficial-for-the-brain

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>