Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Vicious Circle” Offers New Acute Leukemia Treatment Target

14.04.2010
Researchers have identified a self-feeding “vicious circle” of molecules that keeps acute leukemia cells alive and growing and that drives the disease forward.

The findings suggest a new strategy for treating acute myeloid leukemia (AML), one that targets this molecular network and lowers the amount of a protein called KIT, say researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) who conducted the study.

Published in the April 13 issue of the journal Cancer Cell, the study described a new network of protein and microRNA molecules that, when imbalanced, contributes to abnormal KIT protein abundance and favors leukemia development. The researchers were also able to target this network with therapeutic drugs.

“We now understand the mechanism responsible for making so much KIT protein in AML cells, and we believe that targeting that mechanism and reducing the amount of that protein will prove to be a more effective therapy for this disease than the current standard of care,” says study leader Dr. Guido Marcucci, professor of internal medicine and an AML specialist at the OSUCCC-James.

AML strikes 12,800 Americans, killing 9,000 of them each year. More than 80 percent of those cases have elevated levels of KIT protein.

Currently, doctors treat AML using standard chemotherapy. Drugs that target and block the activity of the KIT protein are being tested in clinical trials. These agents, called tyrosine kinase inhibitors, bind to the protein and stop disease progression, but they can lose their effectiveness when new mutations that arise during the course of the disease alter the protein.

“Our study suggests that the amount of KIT protein in cancer cells is as important as its activity, and we discovered that the amount of the protein is controlled by a circular network of molecules that has many points of entry,” says senior co-leader Dr. Ramiro Garzon, assistant professor of internal medicine and an AML specialist at the OSUCCC-James.

“These findings provide a strong rationale for the use and development of drugs that target the components of this network rather than focusing on the activity of KIT alone.”

Marcucci, Garzon, first author Shujun Liu, assistant professor of internal medicine, and their colleagues began this study by showing that patients with mutations in the KIT gene in their leukemic cells had the highest levels of the KIT protein in those cells, and that these patients also had the poorest survival.

“This told us that the amount of the protein in cancer cells is important to the disease process,” Liu says.

Using laboratory-grown AML cells, the researchers identified the series of molecules that control the amount of KIT protein, showing for the first time that a microRNA called miR-29b, along with several well-known cancer-related genes, regulate KIT production.

Normally, these elements work in a balanced fashion to produce the correct amount of KIT protein for healthy cell survival and proliferation. That normal balance is derailed when gene mutations or other genetic damage occurs in the network and promotes the overproduction of the KIT protein.

“It becomes a vicious circle because no matter where genetic damage occurs, the result is the same – overactivation of the circle, overexpression of the KIT protein, and proliferation of leukemic cells,” Liu says.

Using a mouse model, the researchers showed that raising the amount of mutated KIT protein causes leukemia, and drugs that target the network lower the amount of that protein and drive the leukemia into remission. These drugs included proteasome inhibitors, histone deacetylase inhibitors, along with inhibitors of molecules called NF?B and Sp1.

Funding from the National Cancer Institute, the Harry T. Mangurian Jr. Foundation Leukemia Research Fund, the Coleman Leukemia Research Foundation, the Sidney Kimmel Cancer Research Foundation, and the Deutsche Krebshilfe (Dr. Mildred Scheel Foundation for Cancer Research) supported this research.

Other Ohio State researchers involved in this study were Lai-Chu Wu, Jiuxia Pang, Ramasamy Santhanam, Sebastian Schwind, Yue-Zhong Wu, Christopher Hickey, Jianhua Yu, Heiko Becker, Kati Maharry, Michael D. Radmacher, Chenglong Li, Susan P. Whitman, Anjali Mishra, Nicole Stauffer, Anna M. Eiring, Roger Briesewitz, Robert A. Baiocchi, Kenneth K. Chan, Michael A. Caligiuri, John C. Byrd, Carlo M. Croce, Clara D. Bloomfield and Danilo Perrotti.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (http://cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>