Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Vicious Circle” Offers New Acute Leukemia Treatment Target

14.04.2010
Researchers have identified a self-feeding “vicious circle” of molecules that keeps acute leukemia cells alive and growing and that drives the disease forward.

The findings suggest a new strategy for treating acute myeloid leukemia (AML), one that targets this molecular network and lowers the amount of a protein called KIT, say researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) who conducted the study.

Published in the April 13 issue of the journal Cancer Cell, the study described a new network of protein and microRNA molecules that, when imbalanced, contributes to abnormal KIT protein abundance and favors leukemia development. The researchers were also able to target this network with therapeutic drugs.

“We now understand the mechanism responsible for making so much KIT protein in AML cells, and we believe that targeting that mechanism and reducing the amount of that protein will prove to be a more effective therapy for this disease than the current standard of care,” says study leader Dr. Guido Marcucci, professor of internal medicine and an AML specialist at the OSUCCC-James.

AML strikes 12,800 Americans, killing 9,000 of them each year. More than 80 percent of those cases have elevated levels of KIT protein.

Currently, doctors treat AML using standard chemotherapy. Drugs that target and block the activity of the KIT protein are being tested in clinical trials. These agents, called tyrosine kinase inhibitors, bind to the protein and stop disease progression, but they can lose their effectiveness when new mutations that arise during the course of the disease alter the protein.

“Our study suggests that the amount of KIT protein in cancer cells is as important as its activity, and we discovered that the amount of the protein is controlled by a circular network of molecules that has many points of entry,” says senior co-leader Dr. Ramiro Garzon, assistant professor of internal medicine and an AML specialist at the OSUCCC-James.

“These findings provide a strong rationale for the use and development of drugs that target the components of this network rather than focusing on the activity of KIT alone.”

Marcucci, Garzon, first author Shujun Liu, assistant professor of internal medicine, and their colleagues began this study by showing that patients with mutations in the KIT gene in their leukemic cells had the highest levels of the KIT protein in those cells, and that these patients also had the poorest survival.

“This told us that the amount of the protein in cancer cells is important to the disease process,” Liu says.

Using laboratory-grown AML cells, the researchers identified the series of molecules that control the amount of KIT protein, showing for the first time that a microRNA called miR-29b, along with several well-known cancer-related genes, regulate KIT production.

Normally, these elements work in a balanced fashion to produce the correct amount of KIT protein for healthy cell survival and proliferation. That normal balance is derailed when gene mutations or other genetic damage occurs in the network and promotes the overproduction of the KIT protein.

“It becomes a vicious circle because no matter where genetic damage occurs, the result is the same – overactivation of the circle, overexpression of the KIT protein, and proliferation of leukemic cells,” Liu says.

Using a mouse model, the researchers showed that raising the amount of mutated KIT protein causes leukemia, and drugs that target the network lower the amount of that protein and drive the leukemia into remission. These drugs included proteasome inhibitors, histone deacetylase inhibitors, along with inhibitors of molecules called NF?B and Sp1.

Funding from the National Cancer Institute, the Harry T. Mangurian Jr. Foundation Leukemia Research Fund, the Coleman Leukemia Research Foundation, the Sidney Kimmel Cancer Research Foundation, and the Deutsche Krebshilfe (Dr. Mildred Scheel Foundation for Cancer Research) supported this research.

Other Ohio State researchers involved in this study were Lai-Chu Wu, Jiuxia Pang, Ramasamy Santhanam, Sebastian Schwind, Yue-Zhong Wu, Christopher Hickey, Jianhua Yu, Heiko Becker, Kati Maharry, Michael D. Radmacher, Chenglong Li, Susan P. Whitman, Anjali Mishra, Nicole Stauffer, Anna M. Eiring, Roger Briesewitz, Robert A. Baiocchi, Kenneth K. Chan, Michael A. Caligiuri, John C. Byrd, Carlo M. Croce, Clara D. Bloomfield and Danilo Perrotti.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (http://cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>