Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Vicious Circle” Offers New Acute Leukemia Treatment Target

14.04.2010
Researchers have identified a self-feeding “vicious circle” of molecules that keeps acute leukemia cells alive and growing and that drives the disease forward.

The findings suggest a new strategy for treating acute myeloid leukemia (AML), one that targets this molecular network and lowers the amount of a protein called KIT, say researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) who conducted the study.

Published in the April 13 issue of the journal Cancer Cell, the study described a new network of protein and microRNA molecules that, when imbalanced, contributes to abnormal KIT protein abundance and favors leukemia development. The researchers were also able to target this network with therapeutic drugs.

“We now understand the mechanism responsible for making so much KIT protein in AML cells, and we believe that targeting that mechanism and reducing the amount of that protein will prove to be a more effective therapy for this disease than the current standard of care,” says study leader Dr. Guido Marcucci, professor of internal medicine and an AML specialist at the OSUCCC-James.

AML strikes 12,800 Americans, killing 9,000 of them each year. More than 80 percent of those cases have elevated levels of KIT protein.

Currently, doctors treat AML using standard chemotherapy. Drugs that target and block the activity of the KIT protein are being tested in clinical trials. These agents, called tyrosine kinase inhibitors, bind to the protein and stop disease progression, but they can lose their effectiveness when new mutations that arise during the course of the disease alter the protein.

“Our study suggests that the amount of KIT protein in cancer cells is as important as its activity, and we discovered that the amount of the protein is controlled by a circular network of molecules that has many points of entry,” says senior co-leader Dr. Ramiro Garzon, assistant professor of internal medicine and an AML specialist at the OSUCCC-James.

“These findings provide a strong rationale for the use and development of drugs that target the components of this network rather than focusing on the activity of KIT alone.”

Marcucci, Garzon, first author Shujun Liu, assistant professor of internal medicine, and their colleagues began this study by showing that patients with mutations in the KIT gene in their leukemic cells had the highest levels of the KIT protein in those cells, and that these patients also had the poorest survival.

“This told us that the amount of the protein in cancer cells is important to the disease process,” Liu says.

Using laboratory-grown AML cells, the researchers identified the series of molecules that control the amount of KIT protein, showing for the first time that a microRNA called miR-29b, along with several well-known cancer-related genes, regulate KIT production.

Normally, these elements work in a balanced fashion to produce the correct amount of KIT protein for healthy cell survival and proliferation. That normal balance is derailed when gene mutations or other genetic damage occurs in the network and promotes the overproduction of the KIT protein.

“It becomes a vicious circle because no matter where genetic damage occurs, the result is the same – overactivation of the circle, overexpression of the KIT protein, and proliferation of leukemic cells,” Liu says.

Using a mouse model, the researchers showed that raising the amount of mutated KIT protein causes leukemia, and drugs that target the network lower the amount of that protein and drive the leukemia into remission. These drugs included proteasome inhibitors, histone deacetylase inhibitors, along with inhibitors of molecules called NF?B and Sp1.

Funding from the National Cancer Institute, the Harry T. Mangurian Jr. Foundation Leukemia Research Fund, the Coleman Leukemia Research Foundation, the Sidney Kimmel Cancer Research Foundation, and the Deutsche Krebshilfe (Dr. Mildred Scheel Foundation for Cancer Research) supported this research.

Other Ohio State researchers involved in this study were Lai-Chu Wu, Jiuxia Pang, Ramasamy Santhanam, Sebastian Schwind, Yue-Zhong Wu, Christopher Hickey, Jianhua Yu, Heiko Becker, Kati Maharry, Michael D. Radmacher, Chenglong Li, Susan P. Whitman, Anjali Mishra, Nicole Stauffer, Anna M. Eiring, Roger Briesewitz, Robert A. Baiocchi, Kenneth K. Chan, Michael A. Caligiuri, John C. Byrd, Carlo M. Croce, Clara D. Bloomfield and Danilo Perrotti.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (http://cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>