Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibration may help heal chronic wounds

01.04.2014

Wounds may heal more quickly if exposed to low-intensity vibration, report researchers at the University of Illinois at Chicago.

The finding, in mice, may hold promise for the 18 million Americans who have type 2 diabetes, and especially the quarter of them who will eventually suffer from foot ulcers. Their wounds tend to heal slowly and can become chronic or worsen rapidly.


This is a photo of Eileen Weinheimer-Haus, first author, and Timothy Koh, principal investigator.

Credit: Roberta Dupuis-Devlin/University of Illinois at Chicago Photo Services

Timothy Koh, UIC professor of kinesiology and nutrition in the UIC College of Applied Health Sciences, was intrigued by studies at Stony Brook University in New York that used very low-intensity signals to accelerate bone regeneration.

"This technique is already in clinical trials to see if vibration can improve bone health and prevent osteoporosis," Koh said.

... more about:
»Health »UIC »Vibration »blood »earthquake »healing »wounds

Koh and his coworkers at UIC collaborated with Stefan Judex of Stony Brook to investigate whether the same technique might improve wound healing in diabetes. The new study, using an experimental mouse model of diabetes, is published online in the journal PLOS One.

The low-amplitude vibrations are barely perceptible to touch.

"It's more like a buzz than an earthquake," said Eileen Weinheimer-Haus, UIC postdoctoral fellow in kinesiology and nutrition, the first author of the study.

The researchers found that wounds exposed to vibration five times a week for 30 minutes healed more quickly than wounds in mice of a control group.

Wounds exposed to vibration formed more granulation tissue, a type of tissue important early in the wound-healing process. Vibration helped tissue to form new blood vessels -- a process called angiogenesis -- and also led to increased expression of pro-healing growth factors and signaling molecules called chemokines, Weinheimer-Haus said.

"We know that chronic wounds in people with diabetes fail to form granulation tissue and have poor angiogenesis, and we believe these factors contribute to their wounds' failure to heal," said Koh. He and his colleagues want to determine whether the changes they see in cell populations and gene expression at wound sites underlie the observed improvement in healing.

"The exciting thing about this intervention is how easily it could be translated to people," Koh said. "It's a procedure that's non-invasive, doesn't require any drugs, and is already being tested in human trials to see if it's protective of bone loss." A clinical study, in collaboration with Dr. William Ennis, director of the Wound Healing Clinic at UIC, is planned, Koh said.

###

Ennis and Judex are co-authors on the PLOS One study, which was supported by National Institutes of Health grants R01GM092850 and T32DE018381.

Jeanne Galatzer-Levy | EurekAlert!

Further reports about: Health UIC Vibration blood earthquake healing wounds

More articles from Health and Medicine:

nachricht Got good fat?
27.04.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Successful laboratory test of photoswitchable anti-tumor agent
25.04.2016 | Karlsruher Institut für Technologie (KIT)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Candidalysin – the first toxin of Candida albicans

29.04.2016 | Life Sciences

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>