Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viagra relatives may shrink abnormally large hearts

29.09.2009
Compounds related to Viagra, which is already in clinical trials to prevent heart failure, may also counter the disease in a different way, according to a study published online today in the journal Circulation Research. The results hold promise for the design of a new drug class and for its potential use in combination with Viagra or beta blockers.

In heart failure, which affects about 5.7 million Americans, the heart gradually loses the ability to pump with enough force to supply the body with blood. One reason for lost pumping strength is the mass death of heart muscle cells seen in many heart diseases (e.g. heart attack).

Fewer remaining muscle cells must then push around the same amount of blood, and hard working muscles grow. Unlike the healthy bulging of an athlete's bicep, abnormal muscle growth (pathogenic hypertrophy) in diseased hearts thickens chamber walls, slows the heartbeat and causes potentially fatal arrhythmias. Hypertrophy is a major risk factor for the development of heart failure as well.

Recent efforts to reverse hypertrophy include a clinical trial, sponsored by Viagra manufacturer Pfizer, and the National Heart, Lung, and Blood Institute (NHLBI), looking at whether Viagra (sildenafil) can treat moderate heart failure and reduce hypertrophy. Along with increasing blood flow in arteries, Viagra interferes with phosphodiesterases (PDEs), enzymes that break down the messenger molecule called cyclic guanosine monophosphate (cGMP), which would otherwise "put the brakes on" heart muscle cell growth.

Viagra shuts down the PDE5 family in particular, one of 11 PDE families in the body and that include more than 50 individual enzymes. They have proven to be famously good drug targets because each has a unique structure, tissue distribution and role, allowing them to be precisely targeted by drugs for fewer side effects. In the just-published experiments in heart muscle cells and live mice, researchers found that members of a second PDE family, particularly the PDE1a enzyme, also break up cGMP to control hypertrophy, but not in the same way as Viagra.

Where PDE5 breaks down cyclic nucleotides in response to the vital signaling molecule nitric oxide (NO), PDE1 affects cyclic nucleotide pathways sensitive to Calcium (Ca2+), another major player in cardiac disease, according to the authors.

"Our results suggest that a PDE1a inhibitor alone can shut down abnormal cardiac growth, and when combined with Viagra or beta blockers, may do so in more than one way," said Chen Yan, Ph.D., associate professor within the Aab Cardiovascular Research Institute (CVRI) at the University of Rochester Medical Center, and corresponding author for the study. "We found a new drug target, that if interfered with, prevents hypertrophy, and where compounds already exist that interfere with it. The compounds used in the study were experimental, but we are already developing drug candidates based on the discovery."

Whether combination treatments featuring PDE1 inhibitors will have value in heart failure will not become clear until further animal studies are completed, Yan said. Both PDE1 inhibitors and Viagra lower blood pressure, and may or may not lower it too much in combination. Viagra cannot be used with nitroglycerin for this reason. On the other hand, some patients with heart failure cannot use beta blockers, which also reduce hypertrophy, because the drugs make already weak hearts pump with less vigor. Combining beta blockers with PDE1 inhibitors could potentially enable heart failure patients to take less beta blocker, protecting the contractile power of their heart muscle cells while still averting hypertrophy.

Study Details

PDEs, by degrading cGMP, control the strength of its signal. Normally, cGMP-dependent signaling suppresses abnormal growth in heart cells by restraining Ca2+ signals that drive hypertrophy. The research team believes that PDE signaling unbalanced by long-term strain on heart muscle distorts the "crosstalk" between Ca2+ and cGMP to promote abnormal growth. Past studies had shown at least five PDE families, PDE1-5, are present in the human heart, of which PDE1 and PDE5 are most responsible for limiting cGMP supply. Going into the current study, no one knew whether the PDE1 family was involved in hypertrophy.

Yan and colleagues found that levels of PDE1a were significantly increased in heart muscle cells in animal and individual cell models of hypertrophy. The study also confirmed that PDE1a inhibition reduces abnormal growth in heart muscle cells through their effect on cGMP.

PDE1 inhibitor IC86340 was found to reduce by at least 75 percent abnormal growth in studies of isolated rat heart muscle cells in the face of a chemical known to cause hypertrophy (phenylephrine). Yan had published in previous papers that IC86340 could inhibit the PDE1 family, but no one had ever used it to counter hypertrophy. In live mice, the study drug significantly reduced hypertrophy over control mice when both were exposed to the well established hypertrophic agent, isoproterenol.

Yan's team also found that the combination of IC86340 and Viagra in studies of isolated heart muscle cells eliminated hypertrophy to a greater degree than either compound alone. Cell growth was measured by techniques that captured each cell's protein production (more protein equals more growth) and the size of cells in terms of their surface area. Studies already underway are looking at the effect on hypertrophy in live mice with the genes for various PDE1 enzymes removed.

Along with Yan, efforts at the University of Rochester Medical Center were led by Clint Miller, Masayoshi Oikawa, Yujun Cai, Haodong Xu, Burns Blaxall and Jun-ichi Abe within the CVRI; Andrew Wojtovich and David Nagel in the Departments of Pharmacology and Physiology; and by Xiangbin Xu and Jian-Dong Li in the Department of Microbiology and Immunology. Also leading the effort were Vince Florio of Omeris Corp. in Seattle; Sergei Rybalkin and Joseph Beavo in the Department of Pharmacology at the University of Washington and Yiu-Fai Chen in the Department of Medicine at the University of Alabama at Birmingham. This work was supported by the American Heart Association and the National Institutes of Health (NIH).

Also moving forward, Yan's lab is focused on revealing the role of various PDE enzymes in atherosclerosis and hypertension as well as in heart failure.

"Almost every signaling molecule involved in PDE-regulated hypertrophy in the heart – including nitric oxide, calcium and angiotensin II – are at the core of regulating blood pressure and disease-related structural changes in arteries," Yan said. "PDE1a levels appear to influence those pathways in return, which creates the potential for PDE1 inhibitors that treat both hypertrophy in the heart and vascular diseases like hypertension and atherosclerosis."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>