Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vegetable-based drug could inhibit melanoma

03.03.2009
Compounds extracted from green vegetables such as broccoli and cabbage could be a potent drug against melanoma, according to cancer researchers. Tests on mice suggest that these compounds, when combined with selenium, target tumors more safely and effectively than conventional therapy.

"There are currently no drugs to target the proteins that trigger melanoma," said Gavin Robertson, associate professor of pharmacology, pathology and dermatology, Penn State College of Medicine. "We have developed drugs from naturally occurring compounds that can inhibit the growth of tumors in mice by 50 to 60 percent with a very low dose."

Robertson and his colleagues previously showed the therapeutic potential of targeting the Akt3 protein in inhibiting the development of melanoma. The search for a drug to block the protein led them to a class of compounds called isothiocyanates.

These naturally occurring chemicals found in cruciferous vegetables are known to have certain cancer-fighting properties. However, the potency of these compounds is so low that a successful drug would require large impractical amounts of these compounds.

Instead, the Penn State researchers rewired the compounds by replacing their sulfur bonds with selenium. The result, they believe, is a more potent drug that can be delivered intravenously in low doses.

"Selenium deficiency is common in cancer patients, including those diagnosed with metastatic melanoma," explained Robertson, whose findings appear in the March edition of Clinical Cancer Research. "Besides, selenium is known to destabilize Akt proteins in prostate cancer cells."

To study the effectiveness of the new drug -- isoselenocyanate -- researchers injected mice with 10 million cancer cells. Six days later, when the animals developed large tumors, they were divided into two groups and treated separately with either the vegetable compounds or the compounds supplemented with selenium.

"We found that the selenium-enhanced compounds significantly reduced the production of Akt3 protein and shut down its signaling network," explained Robertson, who is also associate director of translational research and leader of the experimental therapeutics program at Penn State Hershey Cancer Institute. The modified compounds also reduced the growth of tumors by 60 percent, compared to the vegetable-based compounds alone.

When the researchers exposed three different human melanoma cell lines to the two compounds, the selenium-enhanced drug worked better on some cell lines than others. The efficiency was from 30 to 70 percent depending on the cell line.

The exact mechanism of how selenium inhibits cancer remains unclear. However Robertson, who has a filed provisional patent on the discovery, is convinced that the use of naturally occurring compounds that target cancer-causing proteins could lead to more effective ways of treating melanoma.

"We have harnessed something found in nature to target melanoma," said Robertson. "And since we only need tiny amounts to kill the cancer cells, it means even less toxic side-effects for the patient."

Human trials of the new drug are still some years away, but the Penn State researcher envisions a drug that could be delivered either intravenously to treat melanoma, or added to sunscreen lotion to prevent the disease.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>