Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vegetable-based drug could inhibit melanoma

03.03.2009
Compounds extracted from green vegetables such as broccoli and cabbage could be a potent drug against melanoma, according to cancer researchers. Tests on mice suggest that these compounds, when combined with selenium, target tumors more safely and effectively than conventional therapy.

"There are currently no drugs to target the proteins that trigger melanoma," said Gavin Robertson, associate professor of pharmacology, pathology and dermatology, Penn State College of Medicine. "We have developed drugs from naturally occurring compounds that can inhibit the growth of tumors in mice by 50 to 60 percent with a very low dose."

Robertson and his colleagues previously showed the therapeutic potential of targeting the Akt3 protein in inhibiting the development of melanoma. The search for a drug to block the protein led them to a class of compounds called isothiocyanates.

These naturally occurring chemicals found in cruciferous vegetables are known to have certain cancer-fighting properties. However, the potency of these compounds is so low that a successful drug would require large impractical amounts of these compounds.

Instead, the Penn State researchers rewired the compounds by replacing their sulfur bonds with selenium. The result, they believe, is a more potent drug that can be delivered intravenously in low doses.

"Selenium deficiency is common in cancer patients, including those diagnosed with metastatic melanoma," explained Robertson, whose findings appear in the March edition of Clinical Cancer Research. "Besides, selenium is known to destabilize Akt proteins in prostate cancer cells."

To study the effectiveness of the new drug -- isoselenocyanate -- researchers injected mice with 10 million cancer cells. Six days later, when the animals developed large tumors, they were divided into two groups and treated separately with either the vegetable compounds or the compounds supplemented with selenium.

"We found that the selenium-enhanced compounds significantly reduced the production of Akt3 protein and shut down its signaling network," explained Robertson, who is also associate director of translational research and leader of the experimental therapeutics program at Penn State Hershey Cancer Institute. The modified compounds also reduced the growth of tumors by 60 percent, compared to the vegetable-based compounds alone.

When the researchers exposed three different human melanoma cell lines to the two compounds, the selenium-enhanced drug worked better on some cell lines than others. The efficiency was from 30 to 70 percent depending on the cell line.

The exact mechanism of how selenium inhibits cancer remains unclear. However Robertson, who has a filed provisional patent on the discovery, is convinced that the use of naturally occurring compounds that target cancer-causing proteins could lead to more effective ways of treating melanoma.

"We have harnessed something found in nature to target melanoma," said Robertson. "And since we only need tiny amounts to kill the cancer cells, it means even less toxic side-effects for the patient."

Human trials of the new drug are still some years away, but the Penn State researcher envisions a drug that could be delivered either intravenously to treat melanoma, or added to sunscreen lotion to prevent the disease.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>