Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt finding may aid recovery from spinal cord injury

06.08.2014

Researchers in the Vanderbilt University Institute of Imaging Science (VUIIS) have achieved the first conclusive non-invasive measurement of neural signaling in the spinal cords of healthy human volunteers.

Their technique, described today in the journal eLife, may aid efforts to help patients recover from spinal cord injuries and other disorders affecting spinal cord function, including multiple sclerosis.

"We definitely hope that this work can be translated to address many neurological disorders," said the paper's first author, Robert Barry, Ph.D., a postdoctoral research fellow in the institute directed by senior author John Gore, Ph.D.

The researchers used ultra-high field functional magnetic resonance imaging (fMRI) to detect for the first time "resting state" signals between neural circuits in the human spinal column. These signals are continuously active, not in response to external stimuli.

"We see these background resting circuits as being inherent measures of function," said Gore, the Hertha Ramsey Cress Professor of Medicine, University Professor and vice chair of Research in the Department of Radiology and Radiological Sciences.

The technique may be valuable for understanding how spinal cord injury changes the "functional connectivity" between neural circuits, for example, and for assessing and monitoring recovery that occurs spontaneously or following various interventions.

"The hope is that when you have impaired function that there will be changes (in the signals)," Gore said. "We've already got evidence for that from other studies."

Studies of the "resting" brain reveal how neural circuits coordinate to control various functions and to produce different behaviors. The spinal cord has been more difficult to study because it is much smaller than the brain, and conventional fMRI isn't sensitive enough to pick up its signals.

The Vanderbilt team overcame this challenge by using an fMRI scanner with a 7 Tesla magnet, multichannel spinal cord coils, and advanced methods for acquiring and analyzing the images. One Tesla is roughly 20,000 times the strength of the magnetic field of the earth.

###

Co-authors Seth Smith, Ph.D., assistant professor, and Adrienne Dula, Ph.D., research instructor, both in the Department of Radiology and Radiological Sciences, are applying advanced imaging methods to better understand human spinal cord diseases such as multiple sclerosis, while Barry has expertise in the acquisition and analysis of functional data.

Craig Boerner | Eurek Alert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>