Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Van Andel Research Institute Finding Could Lead to Reduced Side Effects in Anti-Cancer Antibiotics

29.06.2011
Finding could lead to new and improved drugs for several types of cancer

Most of us have had a doctor prescribe an antibiotic for a stubborn bacterial infection, or for a cut that gets infected. However, prescribing an antibiotic to fight cancer? In fact, anti-cancer antibiotics have been used since the 1950s to successfully treat several forms of cancer, but often the side effects limit the duration they can be given to a patient.

One particularly promising anti-cancer antibiotic is Geldanamycin and a modified form of this drug known as 17AAG. Despite its proven ability to selectively kill many different forms of cancer in laboratory studies, the use of these drugs is limited due to side effects, mainly liver failure, in patients.

Newly published results from Van Andel Research Institute (VARI) researchers have determined how the anti-cancer antibiotic Geldanamycin and its derivative 17AAG work in more detail and have uncovered a possible explanation for side effects observed in clinical trials of the drug.

"The article provides novel and significant information about the clinical potential of these compounds in cancer therapy," said Yale School of Medicine Professor and Chair of Pharmacology Joseph Schlessinger, Ph.D.

Although there was much preclinical interest in the antibiotic Geldanamycin as an anti-cancer drug, it turned out to be a poor candidate for clinical trials because of its toxicity. Derivatives such as 17AAG were developed to decrease toxicity and are still being evaluated in clinical trials.

VARI researchers determined how Geldanamycin and 17AAG work in more detail in a study published in Proceedings of the National Academy of Sciences U.S.A., which could inform future drug design, and also found a way to potentially decrease the antibiotics’ toxicity.

“There was so much interest early on in Geldanamycin because it resulted in the degradation of oncoproteins, important protein targets in tumor cells,” said VARI Research Scientist and lead author of the paper Qian Xie, M.D., Ph.D.

“If there is a chance of decreasing the toxicity of Geldanamycin and 17AAG, it would be a boon in the treatment of cancer,” said George Vande Woude, Ph.D., head of the Laboratory of Molecular Oncology at VARI that published the study.

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. Van Andel Education Institute (VAEI) is dedicated to strengthening science education and preparing and motivating individuals to pursue science or science-related professions. Van Andel Research Institute (VARI), the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson’s and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

Further reports about: 17AAG Anti-Cancer Antibiotics Geldanamycin VAI anti-cancer antibiotics

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>