Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Van Andel Research Institute Finding Could Lead to Reduced Side Effects in Anti-Cancer Antibiotics

Finding could lead to new and improved drugs for several types of cancer

Most of us have had a doctor prescribe an antibiotic for a stubborn bacterial infection, or for a cut that gets infected. However, prescribing an antibiotic to fight cancer? In fact, anti-cancer antibiotics have been used since the 1950s to successfully treat several forms of cancer, but often the side effects limit the duration they can be given to a patient.

One particularly promising anti-cancer antibiotic is Geldanamycin and a modified form of this drug known as 17AAG. Despite its proven ability to selectively kill many different forms of cancer in laboratory studies, the use of these drugs is limited due to side effects, mainly liver failure, in patients.

Newly published results from Van Andel Research Institute (VARI) researchers have determined how the anti-cancer antibiotic Geldanamycin and its derivative 17AAG work in more detail and have uncovered a possible explanation for side effects observed in clinical trials of the drug.

"The article provides novel and significant information about the clinical potential of these compounds in cancer therapy," said Yale School of Medicine Professor and Chair of Pharmacology Joseph Schlessinger, Ph.D.

Although there was much preclinical interest in the antibiotic Geldanamycin as an anti-cancer drug, it turned out to be a poor candidate for clinical trials because of its toxicity. Derivatives such as 17AAG were developed to decrease toxicity and are still being evaluated in clinical trials.

VARI researchers determined how Geldanamycin and 17AAG work in more detail in a study published in Proceedings of the National Academy of Sciences U.S.A., which could inform future drug design, and also found a way to potentially decrease the antibiotics’ toxicity.

“There was so much interest early on in Geldanamycin because it resulted in the degradation of oncoproteins, important protein targets in tumor cells,” said VARI Research Scientist and lead author of the paper Qian Xie, M.D., Ph.D.

“If there is a chance of decreasing the toxicity of Geldanamycin and 17AAG, it would be a boon in the treatment of cancer,” said George Vande Woude, Ph.D., head of the Laboratory of Molecular Oncology at VARI that published the study.

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. Van Andel Education Institute (VAEI) is dedicated to strengthening science education and preparing and motivating individuals to pursue science or science-related professions. Van Andel Research Institute (VARI), the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson’s and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:

Further reports about: 17AAG Anti-Cancer Antibiotics Geldanamycin VAI anti-cancer antibiotics

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>