Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists one step closer to stopping bone loss during spaceflight

24.03.2009
Bone loss in long-duration spaceflight has been identified for decades as a significant problem affecting astronauts.

More recently, scientists have found that the absence of gravity is causing astronauts on the International Space Station to lose up to 10 times more bone mass in key regions of the body each month than most post-menopausal women do in the same period of time back here on Earth.

Now, by simulating spaceflight conditions through the use of long-duration bedrest, researchers at the University of Washington have found -- for the first time -- a way to prevent bone loss in a specific region of the hip. Using bedrest as an analog of spaceflight, UW scientists are at the mid-point of a study in which 22 volunteers remain in bed, in a six-degree, head-down tilt position for 84 days.

The head-down tilt mimics many of the physiologic adaptations astronauts experience during spaceflight, such as bodily fluid shifts toward the head. The bedrest confinement mimics the complete "unloading" of the musculoskeletal system that astronauts feel as they float through space due to the lack of gravity, which accelerates bone loss. Half of the study participants are randomized to perform individually prescribed intermittent treadmill exercise similar to workouts by astronauts in space -- but with one important difference: they are pulled towards the treadmill surface by a harness applying greater force than what the research team has previously measured during walking and running on the International Space Station treadmill.

"We have found that we can, on average, prevent bone loss in an important region of the hip with this intervention," said Dr. Peter Cavanagh, UW professor of orthopaedics and sports medicine, and principal investigator of the study. "No bedrest study ever before has accomplished this."

The results from the first half of the study are "extremely promising," Cavanagh said. Of the five study subjects so far who have been assigned to the exercise group, bone loss in 4 of the 5 subjects has been prevented in important skeletal regions by the treadmill exercise countermeasure, while the six non-exercising control subject participants all lost bone mass.

Cavanagh said the study results will impact bone health in space and on Earth by better informing exercise prescriptions for astronauts on future space missions, while furthering scientists' understanding of the role individualized exercise programs play in addressing age- and gender-related osteoporosis back on Earth.

Funded by NASA and the National Space Biomedical Research Institute (NSBRI), the study is titled "A Quantitative Test of On-Orbit Exercise Countermeasures for Bone Demineralization Using a Bedrest Analog." The study is expected to move to the NASA Flight Analogs Facility at the University of Texas Medical Branch in Galveston in June 2009. Cavanagh will collaborate with fellow scientists at NASA until the anticipated completion of the study in early 2011. He will discuss the relevance of knowledge gained in space for life on Earth in a keynote address at the International Symposium on Osteoporosis in Washington, DC on April 2, 2009.

For more than 40 years, scientists have known that spaceflight has a detrimental effect on bone, but to date, none of the countermeasures have been 100% effective.

"This study takes us another step closer to learning how to maintain bone health during and after these space missions," Cavanagh said. "This week's launch of the Space Shuttle Discovery serves as a timely reminder that space exploration continues and, with it, our research agenda must keep pace to ensure the musculoskeletal health of our first interplanetary explorers -- as well as the rest us back here at home."

Clare Hagerty | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>