Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists one step closer to stopping bone loss during spaceflight

24.03.2009
Bone loss in long-duration spaceflight has been identified for decades as a significant problem affecting astronauts.

More recently, scientists have found that the absence of gravity is causing astronauts on the International Space Station to lose up to 10 times more bone mass in key regions of the body each month than most post-menopausal women do in the same period of time back here on Earth.

Now, by simulating spaceflight conditions through the use of long-duration bedrest, researchers at the University of Washington have found -- for the first time -- a way to prevent bone loss in a specific region of the hip. Using bedrest as an analog of spaceflight, UW scientists are at the mid-point of a study in which 22 volunteers remain in bed, in a six-degree, head-down tilt position for 84 days.

The head-down tilt mimics many of the physiologic adaptations astronauts experience during spaceflight, such as bodily fluid shifts toward the head. The bedrest confinement mimics the complete "unloading" of the musculoskeletal system that astronauts feel as they float through space due to the lack of gravity, which accelerates bone loss. Half of the study participants are randomized to perform individually prescribed intermittent treadmill exercise similar to workouts by astronauts in space -- but with one important difference: they are pulled towards the treadmill surface by a harness applying greater force than what the research team has previously measured during walking and running on the International Space Station treadmill.

"We have found that we can, on average, prevent bone loss in an important region of the hip with this intervention," said Dr. Peter Cavanagh, UW professor of orthopaedics and sports medicine, and principal investigator of the study. "No bedrest study ever before has accomplished this."

The results from the first half of the study are "extremely promising," Cavanagh said. Of the five study subjects so far who have been assigned to the exercise group, bone loss in 4 of the 5 subjects has been prevented in important skeletal regions by the treadmill exercise countermeasure, while the six non-exercising control subject participants all lost bone mass.

Cavanagh said the study results will impact bone health in space and on Earth by better informing exercise prescriptions for astronauts on future space missions, while furthering scientists' understanding of the role individualized exercise programs play in addressing age- and gender-related osteoporosis back on Earth.

Funded by NASA and the National Space Biomedical Research Institute (NSBRI), the study is titled "A Quantitative Test of On-Orbit Exercise Countermeasures for Bone Demineralization Using a Bedrest Analog." The study is expected to move to the NASA Flight Analogs Facility at the University of Texas Medical Branch in Galveston in June 2009. Cavanagh will collaborate with fellow scientists at NASA until the anticipated completion of the study in early 2011. He will discuss the relevance of knowledge gained in space for life on Earth in a keynote address at the International Symposium on Osteoporosis in Washington, DC on April 2, 2009.

For more than 40 years, scientists have known that spaceflight has a detrimental effect on bone, but to date, none of the countermeasures have been 100% effective.

"This study takes us another step closer to learning how to maintain bone health during and after these space missions," Cavanagh said. "This week's launch of the Space Shuttle Discovery serves as a timely reminder that space exploration continues and, with it, our research agenda must keep pace to ensure the musculoskeletal health of our first interplanetary explorers -- as well as the rest us back here at home."

Clare Hagerty | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>