Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientist sniffs out possible new tick species

02.10.2013
In June 2012, Tony Goldberg returned from one of his frequent trips to Kibale National Park, an almost 500-square-mile forest in western Uganda where he studies how infectious diseases spread and evolve in the wild. But he didn't return alone.

"When I got back to the U.S., I realized I had a stowaway," says Goldberg, professor of pathobiological sciences at the University of Wisconsin-Madison School of Veterinary Medicine and associate director for research in the UW-Madison Global Health Institute. "When you first realize you have a tick up your nose, it takes a lot of willpower not to claw your face off."

But Goldberg is an old pro when it comes to nose ticks (this was not his first) and, after all, scientists are trained to be objective and rational. He calmly removed the tick with the aid of a long forceps, flashlight, and mirror, and put it in the freezer in a sealed tube to await further study.

Thankfully, the tick was intact enough post-yanking for DNA sequencing, a process that determines the exact order of nucleotides in a DNA molecule — the genetic signature of a living organism. Goldberg worked with Sarah Hamer, a colleague at Texas A&M University, to sequence the tick's DNA and consulted with Lorenza Beati-Ziegler, curator of the U.S. National Tick Collection at Georgia Southern University, and neither could match the sequence with any species of tick in any database.

... more about:
»Amblyomma »DNA »new species »new tick species

"Either it's a species of tick that is known but has never been sequenced, or it's a new species of tick," says Goldberg, who chronicled the discovery with his co-authors in the current (Sept. 30, 2013) online issue of the American Journal of Tropical Medicine and Hygiene.

Goldberg's stowaway is not the first documented case of a Ugandan nose tick hitching a ride with humans, and others have speculated that these ticks normally infest chimpanzees, which are common in the park. Intrigued, Goldberg enlisted the help of Richard Wrangham, a Harvard University chimp expert, to investigate further. Wrangham and colleagues had just begun using high-resolution digital photography to safely study the timing of molar eruptions in baby chimps from a distance. A closer look at his photos revealed ticks lodged in one-fifth of the chimps' noses.

Digging deeper, Goldberg determined through a review of previously published studies that his international hitchhiking nose tick, and likely those of the chimps, are of the genus Amblyomma. "Amblyomma are known disease carriers, so this could be an underappreciated, indirect, and somewhat weird way in which people and chimps share pathogens," says Goldberg.

And this is why studying the ticks is important. According to Goldberg, given that a tick of this sort can avoid detection through an international flight, coupled with the frequency of global travel, it's possible they could establish exotic tick populations and spread disease to other countries.

Goldberg has spent a large portion of his life in Wisconsin, where wood and deer ticks are abundant, but he has never heard of anyone having a tick up their nose. So why would ticks in the forests of Africa evolve to embed themselves in chimp nostrils? Goldberg surmises that it may have a lot to do with chimp grooming habits.

"Chimps are highly intelligent and social," says Goldberg. "Above all else, grooming is what they use to bond their society. They're absolutely nuts about it."

The ticks may have developed a knack for nostril-diving to better avoid being "groomed off." As a precedent for this behavior, Goldberg points to a species of chimp louse that, when exposed to light, will stiffen, thrusting its front legs straight forward and rear legs back. It may do this to make itself resemble a piece of debris when chimp hair is parted during grooming in an effort to avoid detection, he says.

"Infectious disease and immunology researchers often look at how viruses and other pathogens avoid the complex immune system inside a host," says Goldberg. "This is paralleled on a macro scale with ectoparasites, which have apparently evolved mechanisms to counter external host defenses, such as grooming. So it's not just a tick up my nose — there's a lot of depth to this."

Goldberg is still unsure if his nose tick is a new species. Sadly, the specimen he removed was a nymph, rather than full-fledged adult, so he could not identify it by its morphological features. He also has yet to determine the species of the chimp ticks.

"It's not really practical or safe to pick ticks out of chimps' noses," says Goldberg. "The chimps of Kibale are very well habituated to humans, but they would still object vigorously."

So the next step is attempting to catch ticks on the forest floor with traps, which so far have proven unsuccessful due to chimp interference. While this is disappointing, Goldberg is happy to have at least published his findings up to this point.

"When you get a tick up your nose, you tell the story," says Goldberg.

—Nik Hawkins, 608-263-6914, nihawkin@vetmed.wisc.edu

http://www.ajtmh.org/content/early/2013/09/05/ajtmh.13-0081 http://www.ajtmh.org/content/early/2013/09/05/ajtmh.13-0081.full.pdf+html

Tony Goldberg | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Amblyomma DNA new species new tick species

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>