Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UW research shows new prognosis tool for deadly brain cancer

A diagnosis of glioblastoma multiforme (GBM) is generally a death sentence, but new research from the University of Wisconsin-Madison lab of Dr. John Kuo shows that at least one subtype is associated with a longer life expectancy. This discovery could help with better patient prognoses and lead to targeted drug treatments for GBM subtypes.

People diagnosed with GBM live on average less than 15 months after diagnosis, even after undergoing aggressive surgery, radiation and chemotherapy. But not all GBM cancers are the same, and Kuo's study outlines a new method for sub-typing GBM tumor lines by the proteins they express.

The paper, published early online by the journal Clinical Cancer Research, shows that people who have a subtype of GBM that expresses a particular protein, known for short as CNP, may have a less aggressive subtype of cancer. The survival rate for those with the subtype is sometimes measured in years, not months.

The group isolated tumor lines from five human patients and grew them in the lab, and then looked for biomarkers specific to each line. They later transplanted the tissue into the brains of mice with compromised immune systems.

The researchers also looked for the CNP subtype in samples from 115 human patients and then looked at data on survival rates for those patients. They found that some patients with the protein lived much longer, as long as 10 years after diagnosis.

"We found that this protein was correlated with a less invasive type of cancer in mice, and when we looked at samples of human tumors, remarkably, we also found that the less invasive tumors expressed the CNP protein,'' says Kuo, assistant professor of neurological surgery and human oncology at UW School of Medicine and Public Health.

Kuo says the sub-typing could lead to more accurate prognosis for patients with a GBM diagnosis. Currently, most sub-typing of GBM tumors is based on mRNA, which can be difficult to do. But Kuo says that most hospitals can run assays for proteins, making the test simpler and easier.

In addition, says Michael Zorniak, Kuo's graduate student and lead author on the paper, the new way of typing tumors could lead to designer chemotherapy for GBM.

"As we understand how tumors are differentiated, we can start devising personalized therapies that are targeted to the specific sub-type of cancer,'' he says. "This can help us gain leverage against this difficult cancer."

For example, researchers could create monoclonal antibodies that bind only to the CNP type of cancer, in the way that some subtypes of breast cancer are currently targeted.

The research will be published in the July issue of Clinical Cancer Research, a journal of the American Association for Cancer Research, and is available on-line here:

The research was supported by grants from the National Institutes of Health (T32GM007507, UL1RR025011, RC4AA020476) the National Cancer Institute (HHSN261201000130C, P30CA014520) the Wisconsin Partnership Program, the Center for Stem Cell and Regenerative Medicine, the University of Wisconsin-Madison (Shapiro research scholarship, Graduate School, Department of Neurological Surgery), the HEADRUSH Brain Tumor Research Professorship and the Roger Loff Memorial Fund for GBM Research.

Susan Lampert Smith | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>