Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison researchers link protein with breast cancer's spread to the brain

07.01.2014
A cancer-research team at the University of Wisconsin-Madison has identified a protein that may be a major culprit when breast cancer metastasizes to the brain.

Brain metastasis is a terrifying complication of advanced breast cancer, with a grim prognosis and few treatment options. The cancer's spread to the brain is often undetected until patients start to develop symptoms such as seizures, headaches, and trouble thinking. Scientists hope a better understanding of the molecular events that regulate brain metastasis will lead to earlier diagnosis and improved therapies.

Using cell models, the researchers found that breast cancer cells harness a protein called alphaB-crystallin to help them stick to endothelial cells that line the small blood vessels in the brain. In addition, this protein enhances the penetration of breast cancer cells through the blood-brain barrier, which normally prevents cells and many molecules from entering the brain. Once in the brain, the breast cancer cells are able to form metastases.

The study, published in Clinical Cancer Research, and featured on the journal cover, was led by Dr. Vincent Cryns, professor of medicine at the University of Wisconsin School of Medicine and Public Health and a member of the University of Wisconsin Carbone Cancer Center.

Cryns and his colleagues also developed new mouse models of breast-cancer brain metastasis that mimic many features of the human disease. They found that reducing the expression of alphaB-crystallin in breast cancer cells hindered the cells' ability to form brain metastases in mice.

"These observations in our mouse models suggest that alphaB-crystallin may be a promising drug target that should be explored further," said Cryns. "Although there are no drug inhibitors of this protein currently, we are actively pursuing studies to identify drugs that might reduce the expression of the protein or block its effects," he added.

In addition, by examining tissue from breast-cancer patients who developed brain metastasis, the investigators discovered that women with breast tumors that expressed alphaB-crystallin had a shorter survival than women with breast tumors that did not express this protein. These studies were conducted in collaboration with researchers at the University of North Carolina at Chapel Hill, Duke University and other institutions.

Furthermore, the team found breast tumors that expressed alphaB-crystallin were more likely to be triple-negative breast cancers—an aggressive type of cancer, which lacks three receptors (estrogen receptor, progesterone receptor and HER-2) expressed in other types of breast cancer. Triple-negative breast cancers are known to have a high incidence of brain metastasis.

"Our findings suggest that alphaB-crystallin may contribute to the tendency of triple-negative breast cancers to metastasize to the brain and to their poor prognosis," said Cryns. Yet, he cautioned these findings need to be validated in additional studies.

The research was supported by grants from the Breast Cancer Research Foundation, the National Institutes of Health, Susan G. Komen, and the Cancer and Leukemia Group B.

Lisa Brunette | EurekAlert!
Further information:
http://www.uwhealth.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>