Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSW research suggests new way to ensure effectiveness of TB treatment

29.12.2011
A UT Southwestern Medical Center study using a sophisticated “glass mouse” research model has found that multidrug-resistant tuberculosis (TB) is more likely caused in patients by speedy drug metabolism rather than inconsistent doses, as is widely believed.
If the study published in The Journal of Infectious Diseases is borne out in future investigations, it may lead to better ways to treat one of the world’s major infectious diseases. Health workers worldwide currently are required to witness each administration of the combination of drugs during months of therapy.

Researchers included (from left) Drs. Shashikant Srivastava, Tawanda Gumbo and Jotam G. Pasipanodya.“Tuberculosis is a common ailment, accounting for up to 3 percent of all deaths in many countries. Although effective therapy exists, there are still cases of treatment failure and drug resistance remains a threat,” said Dr. Tawanda Gumbo, associate professor of internal medicine and senior author of the study.

The results seem to challenge the current approach endorsed by the World Health Organization. Under that method, directly observed therapy-short-course strategy (DOTS), TB that responds to medication is treated with a cocktail of drugs under the supervision of health care workers, who in many countries must travel to isolated villages – a costly and time-consuming process.

“Every TB patient is supposed to be watched as they swallow their pills in order to increase adherence and decrease emergence of drug resistance. This is the most expensive part of the program, but has been felt to be cost-effective since it improves compliance,” said Dr. Gumbo, administrative director of research programs for the Office of Global Health at UT Southwestern.

In this study, UT Southwestern researchers created a sophisticated system of high-tech test tubes, which they called a “glass mouse,” that mimicked standard therapy being given daily for 28 to 56 days, with dosing adherence varying between 0 percent and 100 percent. The threshold for defined non-adherence (failure to take a required dose of medication) was reached at 60 percent of the time or more.

“The first main finding in our laboratory model was that in fact non-adherence did not lead to multidrug resistance or emergence of any drug resistance in repeated studies, even when therapy failed. In fact, even when we started with a bacterial population that had been spiked with drug-resistant bacteria, non-adherence still did not lead to drug resistance,” he said.

In fact, using computer simulations based on 10,000 TB patients in Cape Town, South Africa, the researchers discovered that approximately 1 percent of all TB patients with perfect adherence still developed drug resistance because they cleared the drugs from their bodies more quickly.

The body sees drugs as foreign chemicals and tries to rid itself of them, Dr. Gumbo said. A population of individuals with a genetic trait that speeds the process has been found in one area of South Africa that has a high rate of multidrug-resistant TB. In that population, patients who receive standard doses of drugs end up with concentrations in their bodies that are too low to kill the TB bacillus and drug resistance develops, he said.

A Journal of Infectious Diseases editorial that accompanies the study suggests that monitoring the levels of TB drugs in a patient’s blood could be as important as monitoring compliance with therapy – in contrast to current WHO guidelines.

“These data, based on our preclinical model, show that non-adherence alone is insufficient for the emergence of multidrug-resistant TB,” Dr. Gumbo said. “It might be more cost-effective to measure patients’ drug concentrations during treatment and intervene with dosage increases in those who quickly clear the drugs from their systems.”

The work was supported by a grant from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Other UT Southwestern investigators involved in the study are lead author Dr. Shashikant Srivastava, former postdoctoral researcher, and Dr. Jotam G. Pasipanodya, research scientist in internal medicine. Researchers from the School of Pharmacy at Texas Tech University Health Science Center, Dallas, also participated.

Deborah Wormser | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>