Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSW research suggests new way to ensure effectiveness of TB treatment

29.12.2011
A UT Southwestern Medical Center study using a sophisticated “glass mouse” research model has found that multidrug-resistant tuberculosis (TB) is more likely caused in patients by speedy drug metabolism rather than inconsistent doses, as is widely believed.
If the study published in The Journal of Infectious Diseases is borne out in future investigations, it may lead to better ways to treat one of the world’s major infectious diseases. Health workers worldwide currently are required to witness each administration of the combination of drugs during months of therapy.

Researchers included (from left) Drs. Shashikant Srivastava, Tawanda Gumbo and Jotam G. Pasipanodya.“Tuberculosis is a common ailment, accounting for up to 3 percent of all deaths in many countries. Although effective therapy exists, there are still cases of treatment failure and drug resistance remains a threat,” said Dr. Tawanda Gumbo, associate professor of internal medicine and senior author of the study.

The results seem to challenge the current approach endorsed by the World Health Organization. Under that method, directly observed therapy-short-course strategy (DOTS), TB that responds to medication is treated with a cocktail of drugs under the supervision of health care workers, who in many countries must travel to isolated villages – a costly and time-consuming process.

“Every TB patient is supposed to be watched as they swallow their pills in order to increase adherence and decrease emergence of drug resistance. This is the most expensive part of the program, but has been felt to be cost-effective since it improves compliance,” said Dr. Gumbo, administrative director of research programs for the Office of Global Health at UT Southwestern.

In this study, UT Southwestern researchers created a sophisticated system of high-tech test tubes, which they called a “glass mouse,” that mimicked standard therapy being given daily for 28 to 56 days, with dosing adherence varying between 0 percent and 100 percent. The threshold for defined non-adherence (failure to take a required dose of medication) was reached at 60 percent of the time or more.

“The first main finding in our laboratory model was that in fact non-adherence did not lead to multidrug resistance or emergence of any drug resistance in repeated studies, even when therapy failed. In fact, even when we started with a bacterial population that had been spiked with drug-resistant bacteria, non-adherence still did not lead to drug resistance,” he said.

In fact, using computer simulations based on 10,000 TB patients in Cape Town, South Africa, the researchers discovered that approximately 1 percent of all TB patients with perfect adherence still developed drug resistance because they cleared the drugs from their bodies more quickly.

The body sees drugs as foreign chemicals and tries to rid itself of them, Dr. Gumbo said. A population of individuals with a genetic trait that speeds the process has been found in one area of South Africa that has a high rate of multidrug-resistant TB. In that population, patients who receive standard doses of drugs end up with concentrations in their bodies that are too low to kill the TB bacillus and drug resistance develops, he said.

A Journal of Infectious Diseases editorial that accompanies the study suggests that monitoring the levels of TB drugs in a patient’s blood could be as important as monitoring compliance with therapy – in contrast to current WHO guidelines.

“These data, based on our preclinical model, show that non-adherence alone is insufficient for the emergence of multidrug-resistant TB,” Dr. Gumbo said. “It might be more cost-effective to measure patients’ drug concentrations during treatment and intervene with dosage increases in those who quickly clear the drugs from their systems.”

The work was supported by a grant from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Other UT Southwestern investigators involved in the study are lead author Dr. Shashikant Srivastava, former postdoctoral researcher, and Dr. Jotam G. Pasipanodya, research scientist in internal medicine. Researchers from the School of Pharmacy at Texas Tech University Health Science Center, Dallas, also participated.

Deborah Wormser | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>