Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSA infectious disease researchers advancing vaccine against Valley fever

08.07.2009
Windborne fungus Coccidioides causes at least 100,000 respiratory infections each year in California, Arizona, New Mexico and West Texas

Medical mycologists in The South Texas Center for Emerging Infectious Diseases (STCEID) and the Department of Biology at The University of Texas at San Antonio (UTSA) have significantly advanced the fight against San Joaquin Valley Fever, a respiratory infection of humans, commonly called Valley Fever, which is caused by the Coccidioides fungus.

For the first time, the researchers have genetically engineered a live, attenuated vaccine that successfully protects mice against Valley Fever, known in scientific circles as coccidioidomycosis.

A live, attenuated vaccine is used as a preventative treatment based upon creation of a mutated form of the pathogen that is no longer capable of causing disease.

Coccidioides, a soil-dwelling fungus, is responsible for significantly increased numbers of respiratory infections among outdoor workers when compared to the general population. In addition, people with compromised T-cell immunity, the elderly and certain racial groups, such as African-Americans and Filipinos who live in the Southwestern United States, have an increased incidence of the infection's symptoms, caused by the inhalation of Coccidioides spores.

In approximately 40% of human Valley Fever cases, respiratory problems set in one to three weeks after inhalation. Although less than one percent of infected individuals experience severe symptoms, such as chronic-progressive pneumonia or meningitis, the incidence of reported primary pulmonary infection cases in Arizona and California is on the rise, having significantly increased in the last decade.

STCEID researchers at UTSA and Wilford Hall Medical Center at San Antonio's Lackland Air Force Base have long collaborated on Coccidioides studies in the hopes of developing a vaccine to better protect those who are exposed to it in the future. This most recent study has been funded by the National Institute of Allergy and Infectious Diseases, the California HealthCare Foundation and the Margaret Batts Tobin Foundation.

"Respiratory infections caused by Coccidioides tend to escape the radar of most large pharmaceutical companies, because only about 100,000 cases are reported each year," said Garry Cole, professor of biology at UTSA and the study's principal investigator.

He adds, "But when I look at 100,000 cases, I see 100,000 faces looking back at me."

About the University of Texas at San Antonio

The University of Texas at San Antonio is one of the fastest growing higher education institutions in Texas and the second largest of nine academic universities and six health institutions in the UT System. As a multicultural research and teaching institution of access and excellence, UTSA aims to be the Next Great Texas University, providing access to educational excellence and preparing citizen leaders for the global environment.

UTSA serves more than 28,400 students in 64 bachelor's, 47 master's and 21 doctoral degree programs in the colleges of Architecture, Business, Education and Human Development, Engineering, Honors, Liberal and Fine Arts, Public Policy, Sciences and Graduate School. Founded in 1969, UTSA is an intellectual and creative resource center and a socioeconomic development catalyst for Texas and beyond.

Christi Fish | EurekAlert!
Further information:
http://www.utsa.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>