Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSA infectious disease researchers advancing vaccine against Valley fever

08.07.2009
Windborne fungus Coccidioides causes at least 100,000 respiratory infections each year in California, Arizona, New Mexico and West Texas

Medical mycologists in The South Texas Center for Emerging Infectious Diseases (STCEID) and the Department of Biology at The University of Texas at San Antonio (UTSA) have significantly advanced the fight against San Joaquin Valley Fever, a respiratory infection of humans, commonly called Valley Fever, which is caused by the Coccidioides fungus.

For the first time, the researchers have genetically engineered a live, attenuated vaccine that successfully protects mice against Valley Fever, known in scientific circles as coccidioidomycosis.

A live, attenuated vaccine is used as a preventative treatment based upon creation of a mutated form of the pathogen that is no longer capable of causing disease.

Coccidioides, a soil-dwelling fungus, is responsible for significantly increased numbers of respiratory infections among outdoor workers when compared to the general population. In addition, people with compromised T-cell immunity, the elderly and certain racial groups, such as African-Americans and Filipinos who live in the Southwestern United States, have an increased incidence of the infection's symptoms, caused by the inhalation of Coccidioides spores.

In approximately 40% of human Valley Fever cases, respiratory problems set in one to three weeks after inhalation. Although less than one percent of infected individuals experience severe symptoms, such as chronic-progressive pneumonia or meningitis, the incidence of reported primary pulmonary infection cases in Arizona and California is on the rise, having significantly increased in the last decade.

STCEID researchers at UTSA and Wilford Hall Medical Center at San Antonio's Lackland Air Force Base have long collaborated on Coccidioides studies in the hopes of developing a vaccine to better protect those who are exposed to it in the future. This most recent study has been funded by the National Institute of Allergy and Infectious Diseases, the California HealthCare Foundation and the Margaret Batts Tobin Foundation.

"Respiratory infections caused by Coccidioides tend to escape the radar of most large pharmaceutical companies, because only about 100,000 cases are reported each year," said Garry Cole, professor of biology at UTSA and the study's principal investigator.

He adds, "But when I look at 100,000 cases, I see 100,000 faces looking back at me."

About the University of Texas at San Antonio

The University of Texas at San Antonio is one of the fastest growing higher education institutions in Texas and the second largest of nine academic universities and six health institutions in the UT System. As a multicultural research and teaching institution of access and excellence, UTSA aims to be the Next Great Texas University, providing access to educational excellence and preparing citizen leaders for the global environment.

UTSA serves more than 28,400 students in 64 bachelor's, 47 master's and 21 doctoral degree programs in the colleges of Architecture, Business, Education and Human Development, Engineering, Honors, Liberal and Fine Arts, Public Policy, Sciences and Graduate School. Founded in 1969, UTSA is an intellectual and creative resource center and a socioeconomic development catalyst for Texas and beyond.

Christi Fish | EurekAlert!
Further information:
http://www.utsa.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>