Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSA infectious disease researchers advancing vaccine against Valley fever

08.07.2009
Windborne fungus Coccidioides causes at least 100,000 respiratory infections each year in California, Arizona, New Mexico and West Texas

Medical mycologists in The South Texas Center for Emerging Infectious Diseases (STCEID) and the Department of Biology at The University of Texas at San Antonio (UTSA) have significantly advanced the fight against San Joaquin Valley Fever, a respiratory infection of humans, commonly called Valley Fever, which is caused by the Coccidioides fungus.

For the first time, the researchers have genetically engineered a live, attenuated vaccine that successfully protects mice against Valley Fever, known in scientific circles as coccidioidomycosis.

A live, attenuated vaccine is used as a preventative treatment based upon creation of a mutated form of the pathogen that is no longer capable of causing disease.

Coccidioides, a soil-dwelling fungus, is responsible for significantly increased numbers of respiratory infections among outdoor workers when compared to the general population. In addition, people with compromised T-cell immunity, the elderly and certain racial groups, such as African-Americans and Filipinos who live in the Southwestern United States, have an increased incidence of the infection's symptoms, caused by the inhalation of Coccidioides spores.

In approximately 40% of human Valley Fever cases, respiratory problems set in one to three weeks after inhalation. Although less than one percent of infected individuals experience severe symptoms, such as chronic-progressive pneumonia or meningitis, the incidence of reported primary pulmonary infection cases in Arizona and California is on the rise, having significantly increased in the last decade.

STCEID researchers at UTSA and Wilford Hall Medical Center at San Antonio's Lackland Air Force Base have long collaborated on Coccidioides studies in the hopes of developing a vaccine to better protect those who are exposed to it in the future. This most recent study has been funded by the National Institute of Allergy and Infectious Diseases, the California HealthCare Foundation and the Margaret Batts Tobin Foundation.

"Respiratory infections caused by Coccidioides tend to escape the radar of most large pharmaceutical companies, because only about 100,000 cases are reported each year," said Garry Cole, professor of biology at UTSA and the study's principal investigator.

He adds, "But when I look at 100,000 cases, I see 100,000 faces looking back at me."

About the University of Texas at San Antonio

The University of Texas at San Antonio is one of the fastest growing higher education institutions in Texas and the second largest of nine academic universities and six health institutions in the UT System. As a multicultural research and teaching institution of access and excellence, UTSA aims to be the Next Great Texas University, providing access to educational excellence and preparing citizen leaders for the global environment.

UTSA serves more than 28,400 students in 64 bachelor's, 47 master's and 21 doctoral degree programs in the colleges of Architecture, Business, Education and Human Development, Engineering, Honors, Liberal and Fine Arts, Public Policy, Sciences and Graduate School. Founded in 1969, UTSA is an intellectual and creative resource center and a socioeconomic development catalyst for Texas and beyond.

Christi Fish | EurekAlert!
Further information:
http://www.utsa.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>