Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find mechanism that may stop E. coli from developing in cattle

12.05.2010
Microbiologists at UT Southwestern Medical Center, working with the Department of Agriculture, have identified a potential target in cattle that could be exploited to help prevent outbreaks of food-borne illnesses caused by a nasty strain of Escherichia coli.

In the study, available online and in an upcoming issue of the Proceedings of the National Academy of Sciences, researchers interfered with a genetic sensing mechanism that allows the E. coli strain known as enterohemorrhagic O157:H7, or EHEC, to form colonies within cattle, causing the bacteria to die off before they could reach the animals' recto-anal junction, the primary site of colonization. Most other strains of E coli gather in the colon.

"We're diminishing colonization by not letting EHEC go where it needs to go efficiently," said Dr. Vanessa Sperandio, associate professor of microbiology and biochemistry at UT Southwestern and senior author of the study. "If we can find a way to prevent these bacteria from ever colonizing in cattle, it's possible that we can have a real impact on human disease.

"This could be something as simple as including some sort of antagonist in cattle feed, which would result in less shedding of the bacteria in fecal matter with less contamination down the road in food products."

Dr. Sperandio said the finding is important because an estimated 70 percent to 80 percent of the cattle herds in the U.S. carry EHEC.

Although EHEC can be a deadly pathogen to humans, the bacterium is part of cattle's normal gastrointestinal flora. EHEC harbors a gene called sdiA, which makes the SdiA protein. The SdiA protein senses a chemical made by microbes in the animal's rumen, the first of a cow's four stomachs, which serves as a large fermentation chamber. Detecting this signal allows EHEC to pass through the rumen and colonize the recto-anal junction.

For the study, the researchers injected two types of EHEC into the rumens of eight grain-fed adult cows. One mutant version lacked SdiA and could not detect the signal in the rumen. Another strain produced an enzyme that destroyed the chemicals in the rumen sensed by SdiA.

The researchers found that colonization diminished significantly when these EHEC strains were unable to sense the rumen chemicals. The process prevented the bacteria from moving on through the stomach and colonizing.

"If there's no signal, then there's no acid resistance, a requirement for the pathogen to make it to the recto-anal junction," Dr. Sperandio said. "Everybody had thought that this type of signaling occurred naturally in the gastrointestinal tract of mammals. Our finding serves as a proof-of-principle that we might be able to target this system to prevent food contamination."

EHEC, like other E coli strains, is usually transmitted through contaminated food. Recent outbreaks in the U.S. have been found in ground beef, spinach and raw sprouts. EHEC is responsible for outbreaks throughout the world of bloody diarrhea and hemolytic uremic syndrome – a condition that can lead to renal failure and death. Severe symptoms are most common in children, the elderly and immune-suppressed people.

Cattle are the primary source for most E coli infections in the U.S. When cattle waste reaches water sources near food crops, contamination can occur. Unsanitary slaughtering of cattle also can lead to cross-contamination of the beef itself, and shipment of infected food speeds the rate at which the public can become ill.

Dr. Sperandio said the next step is to assess what happens to cows fed a grass-based, rather than grain-based, diet.

Other UT Southwestern researchers involved in the study were Dr. Darya Terekhova, postdoctoral researcher in microbiology; and Dr. David Hughes, lead author and former graduate student in microbiology. Dr. Hughes is now at the University of Miami.

Researchers from the University of Idaho, UT Dallas, the USDA Agricultural Research Service and the University of Maryland School of Medicine also contributed to the study.

The study was funded by the National Institutes of Health, Burroughs Wellcome Fund, and the National Cattlemen's Beef Association.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>