Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URMC Finds Leukemia Cells Are “Bad to the Bone”

27.01.2012
University of Rochester Medical Center researchers have discovered new links between leukemia cells and cells involved in bone formation, offering a fresh perspective on how the blood cancer progresses and raising the possibility that therapies for bone disorders could help in the treatment of leukemia.

The research, led by graduate student Benjamin J. Frisch in the James P. Wilmot Cancer Center laboratory of corresponding author Laura M. Calvi, M.D., is featured in the journal Blood. It is accompanied by an editorial – “Bad to the Bone” -- written by another leading investigator in the field, Steven W. Lane, M.D., of Queensland Institute of Medical Research. Lane says that the URMC’s unexpected laboratory finding provokes new clinical questions, such as whether screening for osteoporosis could provide any useful information for how to manage acute leukemia in newly diagnosed patients.

Leukemia is a devastating disease that results in the disruption of normal blood production. Blood stem cells (hematopoietic stem cells or HSCs) give rise to all mature blood cells and maintain a balance of self-renewal and expansion. However, in this study, even when leukemia is barely traceable in the blood, leukemic cells implant in the bone marrow and attack the body’s natural process of making healthy blood stem cells.

In this hematopoietic microenvironment, or niche, investigators have been searching for clues. In 2003 Calvi introduced the concept that osteoblasts, which actively work to form bone in this same microenvironment, might have a key role in expanding and supporting the production of normal blood cells. Published in the journal Nature, that study served as the basis for the current investigation.

Frisch began focusing on the impact of the leukemia cells, which reside on the inside surface of bones adjacent to bone marrow activity. Until now, according to the Blood paper, no one had defined the important interactions that take place between leukemia cells and osteoblasts (bone forming cells) and osteoclasts, which continually break down bone. Frisch and colleagues used a mouse model and human leukemia tissue samples to show that:
The way in which leukemia alters the balance and cycles of osteoblast and osteoclast activity is complex and counterintuitive, and results in several measurable changes to the skeleton.

For example, since bone formation and bone resorption are usually tightly knit functions, researchers expected to see that dramatic bone loss due to leukemia would also be consistent with a breakdown of bone and minerals, or resorption. Instead, they saw a mild increase in osteoclastic cells responsible for bone resorption, suggesting that leukemia uncouples these two bone cell functions. Ultimately, researchers would like to understand more about osteoclasts during the disease process, so that they can perhaps target those cells for treatment.

In this study, leukemia caused low-level and widespread bone thinning and bone loss, similar to osteoporosis, particularly in the long bones. Preliminary lab experiments showed that treatment with bisphosphonates, a commonly used class of drugs for people who suffer from bone loss, partially restored bone loss in mice with leukemia.

Leukemia results in the expression of a protein, known as CCL3, which slows bone formation. Thus, elevated CCL3 levels in leukemia make it a tempting treatment target. Theoretically, newer drugs that block the CCL3 pathway might be able to restore the low-level, net loss of bone observed in many leukemia patients. A few drug compounds that act on the CCL3 pathway are under study in early-stage clinical trials, Frisch said.

Another interesting question, the study noted, is the way in which dysfunction in the bone marrow microenvironment might delay a patient’s recovery after chemotherapy, or be the catalyst for relapse.

“Our findings are quite provocative and we hope they will lead to new approaches to promote normal blood production in patients with blood cancers,” said Calvi, associate professor of Medicine. “Because the loss of normal hematopoietic function is the chief cause of serious illness and death among leukemia patients, it is critical that we understand all aspects of how this occurs and find new strategies to accelerate the recovery of these defects.”

Funding was provided by the Wilmot Scholar Cancer Research Award and the Pew Scholar in Biomedical Sciences Award. Co-authors include John M. Ashton, Ph.D., URMC Department of Genetics; Lianping Xing, Ph.D., URMC Department of Pathology and Laboratory Medicine; Michael W. Becker, M.D., URMC Department of Medicine, and Craig T. Jordan, Ph.D., the Philip and Marilyn Wehrheim Professor of Medicine at Wilmot.

For Media Inquiries:
Leslie Orr
(585) 275-5774
Email Leslie Orr

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>