Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URMC Finds Leukemia Cells Are “Bad to the Bone”

27.01.2012
University of Rochester Medical Center researchers have discovered new links between leukemia cells and cells involved in bone formation, offering a fresh perspective on how the blood cancer progresses and raising the possibility that therapies for bone disorders could help in the treatment of leukemia.

The research, led by graduate student Benjamin J. Frisch in the James P. Wilmot Cancer Center laboratory of corresponding author Laura M. Calvi, M.D., is featured in the journal Blood. It is accompanied by an editorial – “Bad to the Bone” -- written by another leading investigator in the field, Steven W. Lane, M.D., of Queensland Institute of Medical Research. Lane says that the URMC’s unexpected laboratory finding provokes new clinical questions, such as whether screening for osteoporosis could provide any useful information for how to manage acute leukemia in newly diagnosed patients.

Leukemia is a devastating disease that results in the disruption of normal blood production. Blood stem cells (hematopoietic stem cells or HSCs) give rise to all mature blood cells and maintain a balance of self-renewal and expansion. However, in this study, even when leukemia is barely traceable in the blood, leukemic cells implant in the bone marrow and attack the body’s natural process of making healthy blood stem cells.

In this hematopoietic microenvironment, or niche, investigators have been searching for clues. In 2003 Calvi introduced the concept that osteoblasts, which actively work to form bone in this same microenvironment, might have a key role in expanding and supporting the production of normal blood cells. Published in the journal Nature, that study served as the basis for the current investigation.

Frisch began focusing on the impact of the leukemia cells, which reside on the inside surface of bones adjacent to bone marrow activity. Until now, according to the Blood paper, no one had defined the important interactions that take place between leukemia cells and osteoblasts (bone forming cells) and osteoclasts, which continually break down bone. Frisch and colleagues used a mouse model and human leukemia tissue samples to show that:
The way in which leukemia alters the balance and cycles of osteoblast and osteoclast activity is complex and counterintuitive, and results in several measurable changes to the skeleton.

For example, since bone formation and bone resorption are usually tightly knit functions, researchers expected to see that dramatic bone loss due to leukemia would also be consistent with a breakdown of bone and minerals, or resorption. Instead, they saw a mild increase in osteoclastic cells responsible for bone resorption, suggesting that leukemia uncouples these two bone cell functions. Ultimately, researchers would like to understand more about osteoclasts during the disease process, so that they can perhaps target those cells for treatment.

In this study, leukemia caused low-level and widespread bone thinning and bone loss, similar to osteoporosis, particularly in the long bones. Preliminary lab experiments showed that treatment with bisphosphonates, a commonly used class of drugs for people who suffer from bone loss, partially restored bone loss in mice with leukemia.

Leukemia results in the expression of a protein, known as CCL3, which slows bone formation. Thus, elevated CCL3 levels in leukemia make it a tempting treatment target. Theoretically, newer drugs that block the CCL3 pathway might be able to restore the low-level, net loss of bone observed in many leukemia patients. A few drug compounds that act on the CCL3 pathway are under study in early-stage clinical trials, Frisch said.

Another interesting question, the study noted, is the way in which dysfunction in the bone marrow microenvironment might delay a patient’s recovery after chemotherapy, or be the catalyst for relapse.

“Our findings are quite provocative and we hope they will lead to new approaches to promote normal blood production in patients with blood cancers,” said Calvi, associate professor of Medicine. “Because the loss of normal hematopoietic function is the chief cause of serious illness and death among leukemia patients, it is critical that we understand all aspects of how this occurs and find new strategies to accelerate the recovery of these defects.”

Funding was provided by the Wilmot Scholar Cancer Research Award and the Pew Scholar in Biomedical Sciences Award. Co-authors include John M. Ashton, Ph.D., URMC Department of Genetics; Lianping Xing, Ph.D., URMC Department of Pathology and Laboratory Medicine; Michael W. Becker, M.D., URMC Department of Medicine, and Craig T. Jordan, Ph.D., the Philip and Marilyn Wehrheim Professor of Medicine at Wilmot.

For Media Inquiries:
Leslie Orr
(585) 275-5774
Email Leslie Orr

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>