Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urine test for kidney cancer a step closer to development

08.04.2010
Studying patients with kidney cancer, a team of researchers at Washington University School of Medicine in St. Louis has identified a pair of proteins excreted in the urine that could lead to earlier and more accurate diagnosis of the disease.

The research, published online in the May issue of Mayo Clinic Proceedings, is the first to identify proteins secreted in urine that appear to accurately reveal the presence of about 90 percent of all kidney cancers.

Currently, there is no diagnostic test for kidney cancer. About 80 percent of kidney tumors are discovered incidentally, during a CT scan or ultrasound test that has been ordered for an unrelated abdominal complaint.

“Kidney cancer is a silent and frequently fatal cancer,” says principal investigator Evan D. Kharasch, MD, PhD. “More than 80 percent of patients die within two years of diagnosis, and more than 95 percent die within five years because by the time the cancer is detected, it often has spread beyond the kidney. When it is identified early, however, kidney cancer is curable in a very high percentage of individuals."

Kharasch and co-investigator Jeremiah J. Morrissey, PhD, looked at urine samples from 42 patients who became aware that they had kidney cancer during an abdominal imaging test and from 15 individuals who did not have cancer but were scheduled for surgery. Another 19 healthy volunteers were included who were not having surgery of any kind.

The researchers focused on two proteins that previously had been found in kidney tumors: aquaporin-1 (AQP1) and adipophilin (ADFP). They discovered large amounts of those proteins in urine samples from kidney cancer patients.

The AQP1 or ADFP proteins were not elevated in healthy individuals or surgery patients without cancer. The researchers also found that when the kidney tumors were removed, AQP1 and ADFP levels in the urine declined precipitously.

“We believe that in the same way we use mammograms to screen for breast cancer and blood tests to screen for prostate cancer, we may have the opportunity to detect these proteins in urine as a way to screen for kidney cancer,” Kharasch says.

Kharasch, vice chancellor for research at Washington University, the Russell D. and Mary B. Shelden Professor of Anesthesiology and director of the Division of Clinical and Translational Research in the Department of Anesthesiology, has been working with lead author Morrissey, a research professor of anesthesiology, to detect kidney cancer at an earlier stage.

“When patients come to surgery, it tends to be late in the process, and many already have progressed to a stage where the prognosis is pretty bleak,” says Morrissey. “Screening patients to find kidney cancer when it is still small and treatable could save a number of lives and preserve kidney function in many people. It also may represent the difference between losing an entire kidney or extracting only a tumor while sparing healthy portions of the organ."

About 50,000 patients are diagnosed with kidney cancer each year. And about 13,000 people die from the disease annually in the United States alone. A test that could lead to earlier diagnosis could make a big dent in those numbers, according to Timothy J. Eberlein, MD, director of the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

“One of the goals of the Siteman Cancer Center is to diagnose tumors as early as possible, when they are more curable,” Eberlein says. “Most kidney tumors are found in more advanced stages, when the patient is symptomatic and less likely to be cured. These new findings open the door for a quick, noninvasive test and could revolutionize our approach to the early, accurate diagnosis of kidney cancer."

Morrissey says further testing will be required to determine whether people with other types of kidney disease also have high levels of AQP1 and ADFP in their urine, too. But based upon their findings, Kharasch and Morrisey have filed a patent application through Washington University's Office of Technology Management for use of aquaporin-1 and adipophilin to diagnose kidney cancer.

Because this study looked only at patients who already had a cancer diagnosis following an imaging test, Kharasch and Morrissey say more research will be needed to see how early in the disease process levels of the AQP1 or ADFP proteins rise and whether the concentration of those proteins in the urine might correspond to the size of a kidney tumor.

If the research continues to demonstrate that AQP1 and ADFP urine levels are good markers of kidney cancer, it may someday be possible for routine screening for the disease in a doctor’s office, using a noninvasive urine test to determine whether or not they have the disease.

Morrissey JJ, London AN, Luo J, Kharasch ED. Urinary biomarkers for the early diagnosis of kidney cancer, Mayo Clinic Proceedings, vol. 85, number 5. May 2010. doi:10.4065/mcp.2009.0709

This research was supported by the Department of Anesthesiology at Washington University School of Medicine in St. Louis.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: ADFP AQP1 Anesthesiology Medicine Urine NGAL blood test kidney cancer proteins urine samples

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>