Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New urine test could diagnose eye disease

09.10.2013
Retinitis pigmentosa test identifies mutation found in Ashkenazi Jewish population

You might not think to look to a urine test to diagnose an eye disease.


A composite image of the human retina shows diffused pigmentary retinal degeneration.

Credit: Ziqiang Guan, Duke University Medical Center

But a new Duke University study says it can link what is in a patient's urine to gene mutations that cause retinitis pigmentosa, or RP, an inherited, degenerative disease that results in severe vision impairment and often blindness. The findings appear online in the Journal of Lipid Research.

"My collaborators, Dr. Rong Wen and Dr. Byron Lam at the Bascom Palmer Eye Institute in Florida first sought my expertise in mass spectrometry to analyze cells cultured from a family in which three out of the four siblings suffer from RP," said Ziqiang Guan, an associate research professor of biochemistry in the Duke University Medical School and a contributing author of the study.

Guan's collaborators had previously sequenced the genome of this family and found that the children with RP carry two copies of a mutation at the dehydrodolichol diphosphate synthase (DHDDS) gene, which makes the enzyme that synthesizes organic compounds called dolichols. In humans, dolichol-19, containing 19 isoprene units, is the most abundant species.

The DHDDS mutation, which was found in 2011, is the latest addition to more than 60 gene mutations that have been implicated in RP. This mutation appears to be prevalent in RP patients of the Ashkenazi Jewish origin, and 1 in 322 Ashkenazi carries one copy of the mutation.

"I knew from my previous experience in analyzing urine samples from liver disease patients that I can readily detect dolichols by liquid chromatography and mass spectrometry," Guan said. Using these techniques, he analyzed urine and blood samples from the six family members and found that instead of dolichol-19, the profiles from the three siblings with RP showed dolichol-18 as the dominant species. The parents, who each carry one copy of the mutated DHDDS gene, showed intermediate levels of dolichol-19 and higher levels of dolichol-18 than their healthy child. Guan believes dolichol profiling could effectively distinguish RP caused by DHDDS mutation from that caused by other mutations.

Guan and his collaborators hope to develop the dolichol profiling method as a first-line diagnostic test to identify RP patients with abnormal dolichol metabolism. They think this mass spectrometry-based detection method will help physicians provide more personalized care to RP patients, especially to young children whose retinal degeneration has not fully developed.

"Since the urine samples gave us more distinct profiles than the blood samples, we think that urine is a better clinical material for dolichol profiling," he said. Urine collection is also easier than a blood draw and the samples can be conveniently stored with a preservative. The team is now pursuing a patent for this newl diagnostic test for the DHDDS mutation.

There are currently no treatments for RP, but Guan hopes his research will shed light on potential drug design strategies for treating RP caused by DHDDS mutation. "We are now researching ways to manipulate the dolichol synthesis pathway in RP patients with the DHDDS mutation so that the mutated enzyme can still produce enough dolichol-19, which we believe may be important for the rapid renewal of retinal tissue in a healthy individual."

The research by Guan and his collaborators was supported by NIH grants LIPID MAPS Collaborative Grant GM-069338; R01EY018586; P30-EY014801; Department of Defense grant W81XWH-09-1-0674; Adrienne Arsht Hope for Vision fund; and an unrestricted grant from Research to Prevent Blindness, Inc.

CITATION: "Aberrant dolichol chain lengths as biomarkers for retinitis pigmentosa caused by impaired dolichol biosynthesis," Rong Wen, Byron L. Lam, and Ziqiang Guan. Journal of Lipid Research, online September 27, 2013. DOI:10.1194/jlr.M043232

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>