Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UR Discovers New Way to Boost Vaccines, Seeks Patent

05.08.2010
As the medical community searches for better vaccines and ways to deliver them, a University of Rochester scientist believes he has discovered a new approach to boosting the body’s response to vaccinations.

Richard P. Phipps, Ph.D., found that the same molecules used in drugs that treat diabetes also stimulate B cells in the immune system, pushing them to make antibodies for protection against invading microorganisms.

The University of Rochester Medical Center has applied for international patent protection for this discovery.

Phipps believes further research will show that low doses of insulin-sensitizing drugs might be useful as vaccine adjuvants, particularly for people with weakened immune systems who cannot produce a proper antibody response. This would include some infants, the elderly, and patients with chronic health problems that lower immunity.

Currently the only widely approved vaccine adjuvant in the United States is alum. A vaccine adjuvant is a substance added to a vaccine to improve the body’s immune response. Various forms of aluminum salts have been used for 70 years. (Adjuvants are added to some vaccines but not all. For example, live viral vaccines given during childhood and seasonal flu vaccines do not contain adjuvants.)

“The search is always on for new adjuvants and safe adjuvants,” said Phipps, a Dean’s professor of Environmental Medicine and professor of Medicine, Oncology, Ophthalmology, Microbology and Immunology, Pediatrics and Pathology and Laboratory Medicine. “We are excited that we’ve identified a potentially important new and effective adjuvant.”

Phipps’ discovery grew from years of NIH-funded research investigating a protein called PPAR gamma and its ligands, which are present inside B cells and are involved in inflammation and in regulating the properties of immune cells and cancer cells. The way B cells evolve, or differentiate, is central to the body’s immune response.

A closer examination of the role of PPAR gamma in relation to B cell function showed that PPAR levels increase upon B cell activation, according to a study published in 2009 by Phipps’ laboratory in the Journal of Immunology.

Thus, researchers theorized that any molecule that binds to and activates PPAR gamma would, in turn, improve B cell secretion of antibodies. Researchers tested both natural and synthetic PPAR gamma ligands and discovered that the synthetic molecules used to create anti-diabetic drugs such as Actos and Avandia stimulated human and mouse B cells to better produce antibodies.

The drawback, Phipps said, is the possibility that too much stimulation would cause the immune system to overreact, triggering autoimmune diseases such as rheumatoid arthritis or lupus. Additional research is needed to better understand this process.

The research was funded in part by U.S. Public Health Service grants. Phipps reported he had no financial conflicts of interest. Co-investigator was Tatiana Margarita Garcia-Bates, Ph.D., a graduate student in the Phipps laboratory. She is currently completing post-doctoral work at the University of Pittsburgh.

For Media Inquiries:
Leslie Orr
(585) 275-5774

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>