Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UPC student achieves control of collagen nanofibers to manufacture synthetic knee cartilage

13.11.2008
In her final project, entitled "A Study of the Formation of Collagen Nanofibers using Electrospinning", Camila Flor, a student at the School of Industrial and Aeronautic Engineering of Terrassa, reports on the manufacturing of synthetic cartilage similar to human cartilage, for medical use.

Protection of the knee for disabled people with prostheses may be one of the first applications. The work is part of a macroproject coordinated by the laboratory of Dr. Juan Hinestroza of Cornell University, USA, the creator of bactericidal clothing.

Orienting or controlling nanofibers means arraying them in a particular configuration: in parallel, in a circle, or crossed. The fibers that form the cartilage that protects the knee are aligned in parallel. Orienting collagen nanofibers is an extremely complex task because collagen is a natural polymer that is very difficult to control. Camila Flor, a student at the ETSEIAT (UPC), has achieved this using the electrospinning method.

The results of Camila Flor's work are innovative. The collagen nanofibers are obtained by exposing the collagen to electrical discharges. The collagen is extruded, in the form of a nanofiber thread, through a fine needle and is deposited on an electric collector consisting of two grounded plates. The student placed a nonconductive material between the two conducting plates. The nanofibers aligned on top of each other perfectly in parallel lines between the two conducting plates.

Camila Flor was very cautious when explaining why the nanofibers had behaved in this manner. According to the student, one hypothesis that explains the phenomenon has to do with the ratio of the diameter of the nanofibers to the distance between the two collecting plates on which they are deposited. Flor believes that the smaller the diameter of the nanofibers, the better the results will be, but she insists that this is a working hypothesis that needs to be thoroughly tested.

How to manufacture synthetic cartilage

Until now, creating synthetic cartilage was complex but not impossible. The problem was that it was impossible to imitate the perfection of human cartilage due to the difficulty in orienting the collagen nanofibers; synthetic cartilage was therefore manufactured using gelatinous substances derived from collagen.

The process for creating synthetic cartilage began with processing stem cells. These cells, if processed in the right way, reproduce and transform into any type of cell required by the scientist manipulating them. For this to be possible, the cells must be in an ideal environment. The work carried out by Camila Flor means that the collagen fibers adapt to the configuration of the chondrocytes (cartilage cells) and are made in the ideal environment, in which these chondrocytes grow until they form the desired cartilage.

A Cornell University macroproject

The work by Camila Flor is the result of a final thesis supervised by Dr. Juan Hinestroza of Cornell University, USA, with contributions from Dr. Arun Naik of the UPC's Institute of Textile Research and Industrial Cooperation at the Terrassa Campus, and was carried out within the textile specialization of the Industrial Engineering degree.

Camila Flor has dedicated months of research and study to the work, which is part of a macroproject, the objective of which is to manufacture synthetic cartilage for medical uses, such as knee protection for patients with protheses. The project, funded by the Morgan Family Tissue Engineering Fund, is being carried out by the laboratory run by the lecturer and researcher Dr. Juan Hinestroza of Cornell University, USA, and is coordinated by Dr. Ryan Kurby and Dr. Margaret Frey .

Two US students—a postdoctoral student and a doctoral student—are taking part in the project by carrying out research on stem cells and the manipulation of different types of polymers. Camila Flor, who recently graduated from the ETSEIAT, has managed to orient collagen fibers—a key step that will allow the project to move forward. The next step of the project will be to create the structure obtained by the UPC student in three dimensions so that work can begin on manufacturing cartilage.

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>