Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UPC student achieves control of collagen nanofibers to manufacture synthetic knee cartilage

13.11.2008
In her final project, entitled "A Study of the Formation of Collagen Nanofibers using Electrospinning", Camila Flor, a student at the School of Industrial and Aeronautic Engineering of Terrassa, reports on the manufacturing of synthetic cartilage similar to human cartilage, for medical use.

Protection of the knee for disabled people with prostheses may be one of the first applications. The work is part of a macroproject coordinated by the laboratory of Dr. Juan Hinestroza of Cornell University, USA, the creator of bactericidal clothing.

Orienting or controlling nanofibers means arraying them in a particular configuration: in parallel, in a circle, or crossed. The fibers that form the cartilage that protects the knee are aligned in parallel. Orienting collagen nanofibers is an extremely complex task because collagen is a natural polymer that is very difficult to control. Camila Flor, a student at the ETSEIAT (UPC), has achieved this using the electrospinning method.

The results of Camila Flor's work are innovative. The collagen nanofibers are obtained by exposing the collagen to electrical discharges. The collagen is extruded, in the form of a nanofiber thread, through a fine needle and is deposited on an electric collector consisting of two grounded plates. The student placed a nonconductive material between the two conducting plates. The nanofibers aligned on top of each other perfectly in parallel lines between the two conducting plates.

Camila Flor was very cautious when explaining why the nanofibers had behaved in this manner. According to the student, one hypothesis that explains the phenomenon has to do with the ratio of the diameter of the nanofibers to the distance between the two collecting plates on which they are deposited. Flor believes that the smaller the diameter of the nanofibers, the better the results will be, but she insists that this is a working hypothesis that needs to be thoroughly tested.

How to manufacture synthetic cartilage

Until now, creating synthetic cartilage was complex but not impossible. The problem was that it was impossible to imitate the perfection of human cartilage due to the difficulty in orienting the collagen nanofibers; synthetic cartilage was therefore manufactured using gelatinous substances derived from collagen.

The process for creating synthetic cartilage began with processing stem cells. These cells, if processed in the right way, reproduce and transform into any type of cell required by the scientist manipulating them. For this to be possible, the cells must be in an ideal environment. The work carried out by Camila Flor means that the collagen fibers adapt to the configuration of the chondrocytes (cartilage cells) and are made in the ideal environment, in which these chondrocytes grow until they form the desired cartilage.

A Cornell University macroproject

The work by Camila Flor is the result of a final thesis supervised by Dr. Juan Hinestroza of Cornell University, USA, with contributions from Dr. Arun Naik of the UPC's Institute of Textile Research and Industrial Cooperation at the Terrassa Campus, and was carried out within the textile specialization of the Industrial Engineering degree.

Camila Flor has dedicated months of research and study to the work, which is part of a macroproject, the objective of which is to manufacture synthetic cartilage for medical uses, such as knee protection for patients with protheses. The project, funded by the Morgan Family Tissue Engineering Fund, is being carried out by the laboratory run by the lecturer and researcher Dr. Juan Hinestroza of Cornell University, USA, and is coordinated by Dr. Ryan Kurby and Dr. Margaret Frey .

Two US students—a postdoctoral student and a doctoral student—are taking part in the project by carrying out research on stem cells and the manipulation of different types of polymers. Camila Flor, who recently graduated from the ETSEIAT, has managed to orient collagen fibers—a key step that will allow the project to move forward. The next step of the project will be to create the structure obtained by the UPC student in three dimensions so that work can begin on manufacturing cartilage.

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>