Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UPC student achieves control of collagen nanofibers to manufacture synthetic knee cartilage

13.11.2008
In her final project, entitled "A Study of the Formation of Collagen Nanofibers using Electrospinning", Camila Flor, a student at the School of Industrial and Aeronautic Engineering of Terrassa, reports on the manufacturing of synthetic cartilage similar to human cartilage, for medical use.

Protection of the knee for disabled people with prostheses may be one of the first applications. The work is part of a macroproject coordinated by the laboratory of Dr. Juan Hinestroza of Cornell University, USA, the creator of bactericidal clothing.

Orienting or controlling nanofibers means arraying them in a particular configuration: in parallel, in a circle, or crossed. The fibers that form the cartilage that protects the knee are aligned in parallel. Orienting collagen nanofibers is an extremely complex task because collagen is a natural polymer that is very difficult to control. Camila Flor, a student at the ETSEIAT (UPC), has achieved this using the electrospinning method.

The results of Camila Flor's work are innovative. The collagen nanofibers are obtained by exposing the collagen to electrical discharges. The collagen is extruded, in the form of a nanofiber thread, through a fine needle and is deposited on an electric collector consisting of two grounded plates. The student placed a nonconductive material between the two conducting plates. The nanofibers aligned on top of each other perfectly in parallel lines between the two conducting plates.

Camila Flor was very cautious when explaining why the nanofibers had behaved in this manner. According to the student, one hypothesis that explains the phenomenon has to do with the ratio of the diameter of the nanofibers to the distance between the two collecting plates on which they are deposited. Flor believes that the smaller the diameter of the nanofibers, the better the results will be, but she insists that this is a working hypothesis that needs to be thoroughly tested.

How to manufacture synthetic cartilage

Until now, creating synthetic cartilage was complex but not impossible. The problem was that it was impossible to imitate the perfection of human cartilage due to the difficulty in orienting the collagen nanofibers; synthetic cartilage was therefore manufactured using gelatinous substances derived from collagen.

The process for creating synthetic cartilage began with processing stem cells. These cells, if processed in the right way, reproduce and transform into any type of cell required by the scientist manipulating them. For this to be possible, the cells must be in an ideal environment. The work carried out by Camila Flor means that the collagen fibers adapt to the configuration of the chondrocytes (cartilage cells) and are made in the ideal environment, in which these chondrocytes grow until they form the desired cartilage.

A Cornell University macroproject

The work by Camila Flor is the result of a final thesis supervised by Dr. Juan Hinestroza of Cornell University, USA, with contributions from Dr. Arun Naik of the UPC's Institute of Textile Research and Industrial Cooperation at the Terrassa Campus, and was carried out within the textile specialization of the Industrial Engineering degree.

Camila Flor has dedicated months of research and study to the work, which is part of a macroproject, the objective of which is to manufacture synthetic cartilage for medical uses, such as knee protection for patients with protheses. The project, funded by the Morgan Family Tissue Engineering Fund, is being carried out by the laboratory run by the lecturer and researcher Dr. Juan Hinestroza of Cornell University, USA, and is coordinated by Dr. Ryan Kurby and Dr. Margaret Frey .

Two US students—a postdoctoral student and a doctoral student—are taking part in the project by carrying out research on stem cells and the manipulation of different types of polymers. Camila Flor, who recently graduated from the ETSEIAT, has managed to orient collagen fibers—a key step that will allow the project to move forward. The next step of the project will be to create the structure obtained by the UPC student in three dimensions so that work can begin on manufacturing cartilage.

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>