Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UofL researchers uncover mechanism in saliva production

The research could lead to advanced therapies for patients with dry mouth

University of Louisville researchers are one step closer to helping millions of people whose salivary glands no longer work because of disease or damage from treatment of diseases.

The scientific finding of Douglas Darling, PhD, professor, Department of Oral Health and Rehabilitation, UofL School of Dentistry, and his team identified a protein sorting mechanism used by the salivary gland. The National Institutes of Health supported study published on-line first this week in the Journal of Dental Research.

The scientific discovery could form the basis for advanced therapies for patients whose salivary glands are damaged or no longer function due to radiation therapy, prescription drugs or Sjogren's Syndrome – an immune system disorder often defined by its two most common symptoms — dry eyes and a dry mouth.

The salivary glands are essential for lubrication, defense and beginning digestion in the mouth. The largest of the salivary glands - the parotid - secretes important proteins into the saliva. As with all salivary glands, it has multiple secretion pathways, therefore it must sort proteins destined for saliva into the correct pathway for secretion. This can be tricky as there are seven possible pathways. One pathway takes proteins to the salivary duct, other pathways carry different proteins to the 'back' side of the cell to be secreted into the blood or to form a supportive matrix for the cells. Transport along these pathways occurs by sorting the proteins into vesicles (hollow membrane sacs) that carry their "cargo" to the correct destination.

Conventional thought was that cargo proteins are moved into the forming vesicles by attaching to sorting receptor proteins. Darling and his team have discovered a completely new approach, suggesting the reason no salivary sorting receptor protein has been found is that it may not exist.

In Darling's new model, the salivary cargo protein, Parotid Secretory Protein (PSP), selectively and directly binds to a rare lipid, a type of fat molecule called PtdIns(3,4)P2, present only in certain cell membranes - and only present on one side of the membrane. Darling also found PtdIns(3,4)P2 can flip to the inner part of the vesicle membrane –giving PSP the opportunity to bind it.

"These data imply that phosphatidylinositol-phosphate lipids like PtdIns(3,4)P2 may have multiple functions on the inner surface of organelles," Darling said. "This is contrary to the current belief that their functions are always limited to one surface of the cell membrane."

The next step is for Darling and his team to identify the molecular components used for flipping PtdIns(3,4)P2, and develop approaches to test ways to manipulate this potential protein sorting mechanism.

The study, Parotid Secretory Protein Binds Phosphatidylinositol (3,4) Bisphosphate can be found on the Journal of Dental Research website.

Julie Heflin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>