Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unsaturated fat breakdown leads to complications of acute pancreatitis in obese patients

03.11.2011
The toxic byproducts produced by the breakdown of unsaturated fats lead to a higher likelihood of severe inflammation, cell death and multi-system organ failure among acute pancreatitis patients who are obese, say researchers at the University of Pittsburgh School of Medicine. Their findings, published online today in Science Translational Medicine, provide new insight into how fat can induce complications after sudden inflammatory, non-infectious illnesses.

Doctors have observed that obese people are at greater risk for adverse outcomes after trauma, severe burns, critical illnesses and acute pancreatitis, which is an inflammatory condition of the pancreas typically brought on by gallstones and alcohol, said senior author and UPMC gastroenterologist Vijay Singh, M.D., assistant professor, Division of Gastroenterology, Hepatology and Nutrition, Pitt School of Medicine.

"The mortality rate among patients with severe acute pancreatitis is 40 to 50 percent when kidney failure and respiratory failure develop," he said. "Our findings indicate that the breakdown of unsaturated fat in acute inflammatory conditions can lead to tissue damage throughout the body."

Dr. Singh's team examined pancreas tissue from 24 patients who died with acute pancreatitis and compared them to 50 people who died of other causes. They found that the diseased pancreases of patients who were obese, meaning a body mass index equal to or greater than 30, contained more fat cells, and confirmed the presence of fat from CT imaging scans from the patients taken before their deaths. Autopsy tissue showed also that there was more pancreatic cell death in the areas around fat cell destruction.

Pancreatic fluids from six obese patients with severe acute pancreatitis who had surgical procedures to remove dead tissue revealed high amounts of unsaturated fatty acids, produced from the breakdown of unsaturated fat, than saturated fatty acids. When the researchers combined healthy pancreatic cells with the unsaturated fatty acids in a test tube, the pancreatic cells died.

Then, they induced pancreatitis in obese mice and found that like the human patients, they had high amounts of fat in their pancreases. The fat in obese mice was mostly unsaturated. Kidneys of the mice with pancreatitis were damaged and contained fat deposits, an unexpected finding supported by studies in human autopsy tissue. Infusing unsaturated fatty acids into the bloodstream of the animals leads to lung injury akin to the problems seen in human patients, while administration of saturated fatty acids does not.

"Now that we better understand why these complications arise, we might be able to prevent them and reduce deaths," Dr. Singh said. "We must find ways to stop this toxic process from happening."

He and his team are studying ways to prevent the generation of unsaturated fatty acids in obese rodents to see what happens when they develop acute pancreatitis.

The team includes researchers from the University of Pittsburgh School of Medicine's departments of Pathology, Medicine, Cell Biology and Physiology, Pharmacology and Chemical Biology, Surgery and Radiology.

Funding for the research was provided by the National Center for Research Resources and the NIH Roadmap for Medical Research, both parts of the National Institutes of Health; and the Department of Medicine, Pitt School of Medicine.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>