Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado team identifies new colon cancer marker

28.03.2011
A research team at the University of Colorado Cancer Center has identified an enzyme that could be used to diagnose colon cancer earlier. It is possible that this enzyme also could be a key to stopping the cancer.

Colon cancer is the third most common cancer in Americans, with a one in 20 chance of developing it, according to the American Cancer Society. This enzyme biomarker could help physicians identify more colon cancers and do so at earlier stages when the cancer is more successfully treated.

The research was led by Vasilis Vasiliou, PhD, professor of molecular toxicology at the University of Colorado School of Pharmacy, and published in the Jan. 7 online issue of Biochemical and Biophysical Research Communications. Vasiliou’s laboratory specializes in understanding the role of enzymes called aldehyde dehydrogenases in drug metabolism, metabolic diseases, cancer and normal and cancer stem cells.

Vasiliou’s team studied colon cancers from 40 patients and found a form of this enzyme known as ALDH1B1 present in every colon cancer cell in 39 out of the 40 cases. The enzyme, which is normally found only in stem cells, was detected at extraordinarily high levels.

“Other potential colon cancer biomarkers have been identified in the past, but none thus far are present in such a high percent of the cancer cells and virtually none are overexpressed like this one,” says David Orlicky, PhD, associate professor of pathology at the CU medical school and a member of the research team.

This finding is particularly timely as it was recommended last week at the Human Genome 2011 annual meeting that a chemical analysis for biomarkers should always accompany genotyping in early detection of colon cancer, says Vasiliou, who attended the meeting in Dubai.

It appears that ALDH1B1 aids the development or growth of these cancer cells because it would not be present in every cell at such high levels if it were simply a byproduct of the cancer. Based on this finding, the enzyme may provide a way to treat the disease, says Ying Chen, PhD, lead author and assistant professor of molecular toxicology at the CU School of Pharmacy.

The team is now studying how this enzyme is up-regulated into colon cancer cells and its exact role in the physiology of the tumor cells, Vasiliou says. The team also is seeking to understand the substrate, inhibitors and activators of ALDH1B1.

“Our efforts are focused on developing a drug that could turn into a toxic compound and kill the cancer cell when acted upon by the enzyme,” Vasiliou says. “It would act like a suicide pill, if you will.”

Vasiliou’s team is collaborating in this work with laboratories at the National Cancer Institute, Scripps Research Institute in California, University of Melbourne in Australia, University of Heidelberg in Germany and Oxford University in the United Kingdom.

“This work will be considered a landmark in the understanding of basic metabolic processes within the colon cancer cell,” Orlicky says.

Lynn Clark | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>