Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado team identifies new colon cancer marker

28.03.2011
A research team at the University of Colorado Cancer Center has identified an enzyme that could be used to diagnose colon cancer earlier. It is possible that this enzyme also could be a key to stopping the cancer.

Colon cancer is the third most common cancer in Americans, with a one in 20 chance of developing it, according to the American Cancer Society. This enzyme biomarker could help physicians identify more colon cancers and do so at earlier stages when the cancer is more successfully treated.

The research was led by Vasilis Vasiliou, PhD, professor of molecular toxicology at the University of Colorado School of Pharmacy, and published in the Jan. 7 online issue of Biochemical and Biophysical Research Communications. Vasiliou’s laboratory specializes in understanding the role of enzymes called aldehyde dehydrogenases in drug metabolism, metabolic diseases, cancer and normal and cancer stem cells.

Vasiliou’s team studied colon cancers from 40 patients and found a form of this enzyme known as ALDH1B1 present in every colon cancer cell in 39 out of the 40 cases. The enzyme, which is normally found only in stem cells, was detected at extraordinarily high levels.

“Other potential colon cancer biomarkers have been identified in the past, but none thus far are present in such a high percent of the cancer cells and virtually none are overexpressed like this one,” says David Orlicky, PhD, associate professor of pathology at the CU medical school and a member of the research team.

This finding is particularly timely as it was recommended last week at the Human Genome 2011 annual meeting that a chemical analysis for biomarkers should always accompany genotyping in early detection of colon cancer, says Vasiliou, who attended the meeting in Dubai.

It appears that ALDH1B1 aids the development or growth of these cancer cells because it would not be present in every cell at such high levels if it were simply a byproduct of the cancer. Based on this finding, the enzyme may provide a way to treat the disease, says Ying Chen, PhD, lead author and assistant professor of molecular toxicology at the CU School of Pharmacy.

The team is now studying how this enzyme is up-regulated into colon cancer cells and its exact role in the physiology of the tumor cells, Vasiliou says. The team also is seeking to understand the substrate, inhibitors and activators of ALDH1B1.

“Our efforts are focused on developing a drug that could turn into a toxic compound and kill the cancer cell when acted upon by the enzyme,” Vasiliou says. “It would act like a suicide pill, if you will.”

Vasiliou’s team is collaborating in this work with laboratories at the National Cancer Institute, Scripps Research Institute in California, University of Melbourne in Australia, University of Heidelberg in Germany and Oxford University in the United Kingdom.

“This work will be considered a landmark in the understanding of basic metabolic processes within the colon cancer cell,” Orlicky says.

Lynn Clark | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>