Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique clinic helps amputee athletes push physical boundaries

06.06.2012
UCSF’s Multidisciplinary Training Program Helps Amputees Reach Their Athletic Goals

Carlos Gonzalez stands out from an athletic group gathered on a grassy field at the UCSF Mission Bay campus. The gregarious 32-year-old sports a stylish fauxhawk and walks with a confident yet understated swagger. He's training to become a mixed martial arts (MMA) fighter.

The group looks like a slice of the Bay Area: a multiracial gathering – white, black, Latino, Asian, biracial – of men and women in their early 20s to late 40s.

As diverse as they are, they came together one recent spring afternoon for a common purpose: to participate in UCSF's Amputee Comprehensive Training (ACT) program at the Orthopaedic Institute, to push themselves further than they had ever imagined possible. They came together because they are bonded by a singular experience: all have lost a leg and are learning to push physical boundaries with the help of state-of-the-art artificial limbs.

Some lost their legs early in life due to birth defects. Others lost them later in life, after cancer, motor vehicle accidents or life-threatening bacterial infections robbed them of a limb.

Beyond Just Walking Again

"We work with amputees who want to do more than just learn to walk again with their artificial legs," said Alex Hetherington, a prosthetist with the Orthotics & Prosthetics Centers at UCSF, where experts customize artificial limbs and train patients who have athletic goals.

"We take them from the initial fit to learning the means of running, biking, or whatever activities or goals that our patients may have. Whether it's providing that custom prosthesis, or the physical training involved, we have athletic trainers and access to unlimited resources to take these athletes to the next level."

The day-long training program, held on May 4, 2012, involved a host of evaluations and boot camp-style conditioning exercises designed to ensure that the athletes' artificial legs would do what they need them to do, as well as training and conditioning. A motion-capturing computer program analyzed their gaits and trainers took them through a gauntlet of conditioning programs including sprint exercises, spinning (cycling) classes, rock climbing, kickboxing classes, and military PT (Physical Training) style exercises designed to strengthen their bodies.

The program builds on the Orthotic & Prosthetic Center's daily work of evaluating, designing, custom fitting and manufacturing all types of orthoses (braces) and prostheses (artificial limbs). The team includes doctors, a physical therapist, a trainer, and experts in orthotics and prosthetics who help develop an individualized patient care and rehabilitation plan.

"There's definitely a gray area after patients undergo an amputation, undergo physical therapy and are sort of set off into the world without any additional training or resources," said Matthew Garibaldi, CPO, director of the Orthotics & Prosthetics Centers at UCSF. "We are able to bridge that gap and provide something that we really haven't been able to do in a clinical setting before."

Wrong Place at the Wrong Time

Gonzalez lost his leg seven years ago while walking home in Visitacion Valley – a neighborhood in the southeast section of San Francisco – after a long day at work. He found himself in the crossfire of gang violence.

"One of the guys pulled out a big rifle, and started shooting," Gonzalez said. "I heard a couple of gunshots go off and I remembered people behind me yelling, 'They're shooting! They're shooting!' As I tried to get away, I recalled getting shot in the belly by one of those rounds."

That single round tore through Gonzalez's common iliac artery, which supplies blood to a person's legs. It did so much damage that it put Gonzalez in a coma for two months. Doctors at San Francisco General Hospital and Trauma Center were able to save his life, but they were unable to stave off the infection in his right leg, which quickly spread.

"If I didn't get rid of my leg, they said I probably would have died," Gonzalez said. "They started off below the knee and they worked their way to above the knee, because the infection was so bad."

The Long Journey

The adjustment from having two legs to only one has been a long physical and psychological journey for Gonzalez and the rest of the group.

"I went through so much pain," said Ranjit Steiner, a 21-year-old University of Oregon student who initially had knee replacement surgery after a large, malignant tumor ravaged his right leg. "I couldn't walk anymore and I was on pain killers. I was on crutches walking around campus and it wasn't doing it for me anymore. I wanted to be active and go out with my friends, and play football and go run. I wanted to be who I was before the knee replacement surgery."

Two years ago, Steiner and his doctors agreed to amputate his leg.

"It was a relief to finally be done with all that pain and move on to a new chapter," he said.

Steiner has his sights on the 2012 Paralympics at London this summer. A competitor by nature and a gifted athlete, he played football and ran track in high school. He hopes to qualify for the 200m dash and the long jump.

"When I found out I could do the Paralympics, and I could run, and not just run for fun, but do it at a competitive level, I said, 'I'm going to do that'," Steiner said. "I'm going to shoot for the Paralympics."

Bridging the Gap

For Kent Brown, the services offered at UCSF are light years ahead of what was available when he lost his leg almost 40 years ago due to bone cancer at the age of 14. His first artificial leg was a wooden peg leg.

"It didn't have any mechanics to it. Basically you swung it out and walked on it the best you could without falling," he said. "It was strapped on and very uncomfortable and very heavy."

As the technology evolved, Brown eventually got a hydraulics-based leg, which worked well but was a lot heavier compared to a human leg. Eventually each artificial leg got lighter and lighter, making it easier for him to walk.

Brown hopes to be as swift as Geoff Turner some day. Turner, who lost his right leg in a motorcycle accident 23 years ago, is an avid runner. He learned about running blades through an organization called the Challenged Athletes Foundation and Össur, a company that manufactures running blades.

"That made a huge difference," Turner said. "Before that, I'd get up and run a mile or two with my prosthetic leg. Sometimes it would break and I would have difficulty getting to work. It wasn't until I had a dedicated running blade that my running really took off."

Today, Turner runs marathons and can average eight-minute miles.

A Unique Program

"It's key to have the support of your prosthetist," Turner said. "The idea that they have a trainer here at UCSF is brilliant and it's going to make all the difference in the world for people."

"UCSF's awesome. I came here before my amputation, and fell in love with it after the amputation," Steiner said. "I met Matt and Alex and the whole team, and they got me moving. I told Matt, 'I want to run and I want to move,' and he said, 'OK. That's what we're going to do.' Now we're here. And it's not just me. It's a bunch of other athletes like me."

"I have never seen anything like this before," said Robert Kim, who lost his leg eight years ago after acquiring staph infection. "I was working with a group in Sacramento and it would take weeks for me to get in. I can call UCSF and I can get in the same week. I show up and they'll take care of me every time."

"What UCSF is doing, and what we're a part of, is creating a community of amputees who have a common thread. We're using athletics and sports as our common thread," said Alan Shanken, who lost his right leg at the age of three due to a birth defect. "I think UCSF is doing a terrific thing that can really grow and we also have a group of passionate amputees who want to help each other. And this community is really important and I think this community can be a really strong foundation."

"They're fantastic," added Mary Roberts, who lost her leg at the age of 17 when doctors found a tumor in her right foot. "They're really great. They're very supportive and I love that they're doing new things and trying to build a community and provide opportunities for amputees who are athletes."

Learning and Giving Back

The next Amputee Comprehensive Training event is scheduled for the fall, building on the recent spring event. Organizers hope to make the next one a national event.

"We want to really allow people from all over the country who are also in a similar position who want to be able to do these activities and never have been shown how to, and never have been given the resources to do so," Garibaldi said.

For Gonzalez, this event and the community of athletes it gathered are about learning and giving back. He says martial arts has helped pull him out of depression and given him a renewed purpose in life.

"So as a team, I ask, the guys at UCSF give, and what I give back to them is me being here and thriving and helping people out, so it's rewarding for all of us," he said. "It has nothing to do with, 'you do this for me and I'll do this for you.' This is more like, this is our purpose in life and we enjoy what we do.

"It's taken me a long time to get here."

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Video: Unique Clinic Helps Amputee Athletes Push Physical Boundaries - http://youtu.be/7_8q9DQgm80

Follow UCSF
UCSF.edu | Facebook.com/ucsf | Twitter.com/ucsf | YouTube.com/ucsf

Leland Kim | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>