Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH researchers develop improved tool for cycling fitness

31.08.2010
For competitive bicyclists with goals – whether competing in the Tour de France or aiming for the podium at a local race – faster cycling comes from training regimens based on various zones of exercise intensity.

New research from exercise scientists at the University of New Hampshire has found that effective training regimens, which generally are created after expensive, time-consuming laboratory tests, can be developed from a relatively simple, do-it-yourself test.

Using two tools most competitive cyclists already own -- a power meter, an increasingly common training device that mounts on a bicycle’s rear wheel, and a stationary bicycle trainer – UNH graduate student Jay Francis ’09 modified a three-minute all-out cycling test and found that it is as effective as more lab-intensive measurements for determining exercise intensity. The study, which was Francis’s master’s thesis, is published in the September 2010 issue of Medicine & Science in Sports and Exercise, the premier journal in the field.

“Power is a very unbiased way of measuring your exercise ability, compared to speed, heart rate, or perceived exertion,” says Francis. “A power meter measures how much power you are getting from your body to the road,” independent of external conditions like hills, wind, or even what you had for lunch, he adds.

... more about:
»UNH »cycling fitness »exercise »heart rate

Francis and his advisor, assistant professor Dain LaRoche, wondered if this increasingly common piece of equipment could be used to establish individualized exercise intensity domains – training zones that range from moderate to severe – that were as accurate as those established with complex laboratory testing.

Francis used a three-minute all-out cycling test – “you just push and push and push and never let up” – which had previously shown to yield, in the last 30 seconds of the test, a power level that a cyclist can sustain for 20 to 30 minutes. He replaced the expensive and problematic laboratory equipment used in the original three-minute test with the cyclist’s own bicycle, fitted with a power meter and used with a stationary trainer.

Testing 16 competitive cyclists, Francis compared their exercise intensity from the power meter test with classic laboratory-produced exercise intensity measures: blood lactate concentration and oxygen consumption. The power-meter and laboratory-based results correlated.

“You can go out with your own power meter and, for free, in just three minutes, you can do what would cost you $250 and take over an hour in the lab,” says LaRoche.

With this data, says LaRoche, a cyclist can develop a range of individualized training zones that a coach will use to prescribe a particular workout. “You can’t use heart rate, because everyone’s is different, but you can say, ‘we’re doing a zone three workout today.’ As a former coach I see the practicality of it,” he adds. LaRoche previously worked with speed skaters and Nordic skiers for the U.S. Olympic Committee.

Francis took a more circuitous route toward exercise science. He received bachelor’s and master’s degrees from UNH in electrical engineering in the early 1990s, then worked in that field for many years while taking up cycling recreationally. He returned to UNH for a second master’s degree, in exercise science, to help him pursue his goal of becoming a cycling coach. A self-described “mid-range amateur cyclist,” Francis launched his own coaching service in Merrimack upon graduation last year. Its name, FxD Coaching, riffs on an equation that engineering and exercise share: force times distance equals work.

The work he dedicated to his master’s thesis paid off. LaRoche says it’s unusual for a master’s-level student to have an article accepted in the prestigious Medicine & Science in Sports and Exercise journal. More importantly, says LaRoche, Francis’s work can now have an impact on athletes. “There’s so much misinformation out there about how to train,” he says. “Jay is providing a real service for mid-range cyclists.”

The abstract for the study is available at http://journals.lww.com/acsm-msse/Fulltext/2010/09000/Defining_Intensity_Domains_from_the_End_Power_of_a.20.aspx. In addition to Francis and LaRoche, co-authors were UNH exercise science professor Timothy Quinn and Markus Amann of the department of internal medicine at the University of Utah.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,200 graduate students.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

Further reports about: UNH cycling fitness exercise heart rate

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>