Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH researchers develop improved tool for cycling fitness

31.08.2010
For competitive bicyclists with goals – whether competing in the Tour de France or aiming for the podium at a local race – faster cycling comes from training regimens based on various zones of exercise intensity.

New research from exercise scientists at the University of New Hampshire has found that effective training regimens, which generally are created after expensive, time-consuming laboratory tests, can be developed from a relatively simple, do-it-yourself test.

Using two tools most competitive cyclists already own -- a power meter, an increasingly common training device that mounts on a bicycle’s rear wheel, and a stationary bicycle trainer – UNH graduate student Jay Francis ’09 modified a three-minute all-out cycling test and found that it is as effective as more lab-intensive measurements for determining exercise intensity. The study, which was Francis’s master’s thesis, is published in the September 2010 issue of Medicine & Science in Sports and Exercise, the premier journal in the field.

“Power is a very unbiased way of measuring your exercise ability, compared to speed, heart rate, or perceived exertion,” says Francis. “A power meter measures how much power you are getting from your body to the road,” independent of external conditions like hills, wind, or even what you had for lunch, he adds.

... more about:
»UNH »cycling fitness »exercise »heart rate

Francis and his advisor, assistant professor Dain LaRoche, wondered if this increasingly common piece of equipment could be used to establish individualized exercise intensity domains – training zones that range from moderate to severe – that were as accurate as those established with complex laboratory testing.

Francis used a three-minute all-out cycling test – “you just push and push and push and never let up” – which had previously shown to yield, in the last 30 seconds of the test, a power level that a cyclist can sustain for 20 to 30 minutes. He replaced the expensive and problematic laboratory equipment used in the original three-minute test with the cyclist’s own bicycle, fitted with a power meter and used with a stationary trainer.

Testing 16 competitive cyclists, Francis compared their exercise intensity from the power meter test with classic laboratory-produced exercise intensity measures: blood lactate concentration and oxygen consumption. The power-meter and laboratory-based results correlated.

“You can go out with your own power meter and, for free, in just three minutes, you can do what would cost you $250 and take over an hour in the lab,” says LaRoche.

With this data, says LaRoche, a cyclist can develop a range of individualized training zones that a coach will use to prescribe a particular workout. “You can’t use heart rate, because everyone’s is different, but you can say, ‘we’re doing a zone three workout today.’ As a former coach I see the practicality of it,” he adds. LaRoche previously worked with speed skaters and Nordic skiers for the U.S. Olympic Committee.

Francis took a more circuitous route toward exercise science. He received bachelor’s and master’s degrees from UNH in electrical engineering in the early 1990s, then worked in that field for many years while taking up cycling recreationally. He returned to UNH for a second master’s degree, in exercise science, to help him pursue his goal of becoming a cycling coach. A self-described “mid-range amateur cyclist,” Francis launched his own coaching service in Merrimack upon graduation last year. Its name, FxD Coaching, riffs on an equation that engineering and exercise share: force times distance equals work.

The work he dedicated to his master’s thesis paid off. LaRoche says it’s unusual for a master’s-level student to have an article accepted in the prestigious Medicine & Science in Sports and Exercise journal. More importantly, says LaRoche, Francis’s work can now have an impact on athletes. “There’s so much misinformation out there about how to train,” he says. “Jay is providing a real service for mid-range cyclists.”

The abstract for the study is available at http://journals.lww.com/acsm-msse/Fulltext/2010/09000/Defining_Intensity_Domains_from_the_End_Power_of_a.20.aspx. In addition to Francis and LaRoche, co-authors were UNH exercise science professor Timothy Quinn and Markus Amann of the department of internal medicine at the University of Utah.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,200 graduate students.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

Further reports about: UNH cycling fitness exercise heart rate

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>