Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the neurobiological basis of general anesthesia

30.12.2010
Review article delineates similarities with and differences from sleep and coma

The use of general anesthesia is a routine part of surgical operations at hospitals and medical facilities around the world, but the precise biological mechanisms that underlie anesthetic drugs' effects on the brain and the body are only beginning to be understood.

A review article in the December 30 New England Journal of Medicine brings together for the first time information from a range of disciplines, including neuroscience and sleep medicine, to lay the groundwork for more comprehensive investigations of processes underlying general anesthesia.

"A key point of this article is to lay out a conceptual framework for understanding general anesthesia by discussing its relation to sleep and coma, something that has not been done in this way before," says Emery Brown, MD, PhD, of the Massachusetts General Hospital (MGH) Department of Anesthesia, Critical Care and Pain Medicine, lead author of the NEJM paper. "We started by stating the specific physiological states that comprise general anesthesia – unconsciousness, amnesia, lack of pain perception and lack of movement while stable cardiovascular, respiratory and thermoregulatory systems are maintained – another thing that has never been agreed upon in the literature; and then we looked at how it is similar to and different from the states that are most similar – sleep and coma."

After laying out their definition, Brown and his co-authors – Ralph Lydic, PhD, a sleep expert from the University of Michigan, and Nicholas Schiff, MD, an expert in coma from Weill Cornell Medical College – compare the physical signs and electroencephalogram (EEG) patterns of general anesthesia to those of sleep. While it is common to describe general anesthesia as going to sleep, there actually are significant differences between the states, with only the deepest stages of sleep being similar to the lightest phases of anesthesia induced by some types of agents.

While natural sleep normally cycles through a predictable series of phases, general anesthesia involves the patient being taken to and maintained at the phase most appropriate for the procedure, and the phases of general anesthesia at which surgery is performed are most similar to states of coma. "People have hesitated to compare general anesthesia to coma because the term sounds so harsh, but it really has to be that profound or how could you operate on someone?" Brown explains. "The key difference is this is a coma that is controlled by the anesthesiologist and from which patients will quickly and safely recover."

In detailing how different anesthetic agents act on different brain circuits, the authors point out some apparently contradictory information – some drugs like ketamine actually activate rather than suppress neural activity, an action that can cause hallucinations at lower doses. Ketamine blocks receptors for the excitatory transmitter glutamate, but since it has a preference for receptors on certain inhibitory neurons, it actually stimulates activity when it blocks those inhibitors. This excess brain activity generates unconsciousness through a process similar to what happens when disorganized data travels through an electronic communication line and blocks any coherent signal. A similar mechanism underlies seizure-induced unconsciousness.

Brown also notes that recent reports suggest an unexpected use for ketamine – to treat depression. Very low doses of the drug have rapidly reduced symptoms in chronically depressed patients who had not responded to traditional antidepressants. Ketamine is currently being studied to help bridge the first days after a patient begins a new antidepressant – a time when many may be at risk of suicide – and the drug's activating effects may be akin to those of electroconvulsive therapy.

Another unusual situation the authors describe is the case of a brain-injured patient in a minimally conscious state who actually recovered some functions through administration of the sleep-inducing drug zolpidem (Ambien). That patient's case, analyzed previously by Schiff, mirrors a common occurrence called paradoxical excitation, in which patients in the first stage of general anesthesia may move around or vocalize. The authors describe how zolpidem's suppression of the activity of a brain structure called the globus pallidus – which usually inhibits the thalamus – stimulates activity in the thalamus, which is a key neural control center. They hypothesize that a similar mechanism may underlie paradoxical excitation.

"Anesthesiologists know how to safely maintain their patients in the states of general anesthesia, but most are not familiar with the neural circuit mechanisms that allow them to carry out their life-sustaining work," Brown says. "The information we are presenting in this article – which includes new diagrams and tables that don't appear in any anesthesiology textbook – is essential to our ability to further understanding of general anesthesia, and this is the first of several major reports that we anticipate publishing in the coming year."

Schiff adds, "We think this is, conceptually, a very fresh look at phenomena we and others have noticed and studied in sleep, coma and use of general anesthesia. By reframing these phenomena in the context of common circuit mechanisms, we can make each of these states understandable and predictable."

Brown is the Warren M. Zapol Professor of Anaesthesia at Harvard Medical School and also professor in the Department of Brain and Cognitive Sciences at Massachusetts Institute of Technology and in the Harvard-MIT Division of Health Sciences and Technology. Support for the authors’ report includes a National Institutes of Health Director’s Pioneer Award to Brown, other NIH grants, and support from the MGH and University of Michigan Departments of Anesthesia and the James S. McDonnell Foundation.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Jennifer Gundersen Harris | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>