Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Uncommon BRAF mutation in melanoma sensitive to MEK inhibitor drug therapy

An uncommon mutation of the BRAF gene in melanoma patients has been found to respond to MEK inhibitor drugs, providing a rationale for routine screening and therapy in melanoma patients who harbor the BRAF L597 mutation.

The new study by co-first-authors Kimberly Brown Dahlman, Ph.D., Junfeng Xia, Ph.D., and Katherine Hutchinson, B.S., Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tenn., was published online July 14 in Cancer Discovery. The research was led by co-senior authors William Pao, M.D., Ph.D., Jeffrey Sosman, M.D., and Zhongming Zhao, Ph.D., VICC, and Antoni Ribas, M.D., Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, Calif.

Mutations in BRAF V600E or KIT are common in about 40 percent to 50 percent of melanomas, and drugs that block or inhibit BRAF V600E were recently approved for treatment of melanoma patients with these mutations. However, there has been no effective treatment for patients with wildtype (WT) melanoma that is negative for these driver mutations.

To uncover other potentially targetable mutations, the investigators studied the tumor from a 75-year-old patient with an aggressive form of melanoma which was negative for the BRAF V600E mutation. They performed whole genome sequencing on the tumor, along with DNA from matched blood, and confirmed a mutation at BRAF L597.

To determine how many similar mutations might be overlooked by assessing only the BRAF V600 position, they analyzed the mutational status of 49 additional tumor samples negative for V600, as well as recurrent mutations in NRAS and KIT. Two of the tumors (4 percent) were found to have BRAF L597 mutations and a third tumor harbored a BRAF K601E mutation.

BRAF L597 and K601 are adjacent to V600. Since V600 mutants are sensitive to both BRAF and MEK inhibitor drugs, the investigators tested whether the BRAF inhibitor drug vemurafenib and a MEK inhibitor drug could inhibit cell proliferation signals induced by these mutants in cell lines. The MEK inhibitor led to a dramatic shut down of signaling, suggesting that tumors harboring BRAF L597 and K601 mutations might benefit from treatment with MEK inhibitors.

Confirming this hypothesis, a 69-year-old patient with metastatic melanoma harboring a BRAF L597S mutation experienced significant disease shrinkage after two cycles on therapy with a MEK inhibitor drug called TAK-733, currently in Phase I clinical trials. The patient was disease progression-free after more than 24 weeks.

The authors believe these data demonstrate that BRAF L597 mutations have clinical significance in melanoma. Further study is needed to confirm these findings.

Other researchers who participated in the study include: Mohammad Atefi, Ph.D., Suzanne Branch, CCRC and John Glaspy, M.D., MPH, UCLA; Neal Rosen, M.D., Ph.D., and David Solit, M.D., Memorial Sloan-Kettering Cancer Center, New York, N.Y.; Donald Hucks, M.S., Peilin Jia, Ph.D., Zengliu Su, M.D., Ph.D., Pamela Lyle, M.D., Donna Hicks, B.S., James Netterville, M.D., and Cindy Vnencak-Jones, Ph.D., Vanderbilt; and Viviana Bozon, M.D., Millennium Pharmaceuticals, Cambridge, Mass.

Funding was provided by the National Cancer Institute (NCI), a division of the National Institutes of Health (NIH) - VICC Cancer Center Core Grant (CA68485), 5K24 CA97588]06 (JS) and P01CA129243, the T.J. Martell Foundation, the Kleberg Foundation, the Seaver Institute, the Wesley Coyle memorial fund, the Garcia]Corsini family fund, Harry J. Lloyd Charitable Trust (PIP), the American Cancer Society (Mary Hendrickson]Johnson Melanoma Professorship to JS), Stand Up to Cancer SU2C-AACR-IRG0109 (WP), The James C. Bradford Family Foundation, and an anonymous donor. Treatment with TAK]733 was supported through a clinical trial from Millennium Pharmaceuticals.

Dagny Stuart | EurekAlert!
Further information:

Further reports about: BRAF Cancer Gates Foundation MEK Millennium Pharmaceuticals UCLA V600E VICC treatment of melanoma

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>