Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UNC laboratory to help track and control tropical diseases

29.09.2008
The University of North Carolina at Chapel Hill School of Public Health has established a new Gillings Innovation Lab to track and map tropical infectious diseases such as malaria, using state-of-the-art molecular and demographic methods.

Better information about the prevalence and location of diseases will help national and international health organizations around the world treat and control these diseases.

Steven R. Meshnick, M.D., Ph.D., UNC an epidemiology professor in the School of Public Health and an expert on molecular epidemiology and infectious diseases, will lead the new project, known as the laboratory for molecular surveillance of tropical diseases.

The lab will work with the research and evaluation company ORC-Macro, the Institute of Tropical Medicine in Antwerp, Belgium, and the Kinshasa School of Public Health in the Democratic Republic of Congo. Together, the group will measure the distribution of malaria, drug-resistant malaria, African sleeping sickness and other infectious diseases in the Democratic Republic of Congo.

"Infectious diseases remain the leading cause of death and disability in developing countries," Meshnick said. "Current maps and prevalence data on tropical diseases are usually estimates based on samples that paint a potentially inaccurate picture. We want to help international and national health organizations get better data and maps for tropical diseases from representative population-based surveys. Better information will help guide efforts to control tropical diseases, and also will help in evaluating the effectiveness of efforts to control their spread."

The team includes geographer Mike Emch, Ph.D., associate professor in the College of Arts and Sciences, and molecular microbiologist, Melissa Miller, Ph.D., assistant professor in the pathology and laboratory medicine department in the School of Medicine. It also includes Democratic Republic of Congo scientists, which should help build expertise within the country.

Meshnick said he hoped the new lab's disease surveillance approach will become a model for similar surveillance programs in other developing countries.

"This work will help the 'poorest of the poor,' who bear the brunt of the burden of tropical diseases," Meshnick said.

The team's initial work will involve analyzing 9,000 dried blood spots collected in 2007 for tracking HIV infection.

The Gillings Innovation Labs, part of Carolina Public Health Solutions, were established in the school in 2007 and are funded through a $50 million gift pledged by Dennis and Joan Gillings. In honor of the gift, the school will be renamed the UNC Gillings School of Global Public Health on Friday (Sept. 26).

The labs' purpose is to anticipate future public health challenges and accelerate solutions through groundbreaking science, research, teaching and practice, and through interdisciplinary teams and effective translation of interventions to high-impact settings. Meshnick's is the 10th such lab announced by the school. It will begin in January 2009 and continue for two years.

Other Gillings Innovation Labs have been established to develop vaccines for respiratory diseases that are simpler to store and administer than current vaccines; provide greater access to safe and clean water; improve care for the mentally ill; monitor air quality; and weigh benefits of locally grown foods.

Patric Lane | EurekAlert!
Further information:
http://www.unc.edu
http://www.sph.unc.edu/accelerate

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>