Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UNC laboratory to help track and control tropical diseases

29.09.2008
The University of North Carolina at Chapel Hill School of Public Health has established a new Gillings Innovation Lab to track and map tropical infectious diseases such as malaria, using state-of-the-art molecular and demographic methods.

Better information about the prevalence and location of diseases will help national and international health organizations around the world treat and control these diseases.

Steven R. Meshnick, M.D., Ph.D., UNC an epidemiology professor in the School of Public Health and an expert on molecular epidemiology and infectious diseases, will lead the new project, known as the laboratory for molecular surveillance of tropical diseases.

The lab will work with the research and evaluation company ORC-Macro, the Institute of Tropical Medicine in Antwerp, Belgium, and the Kinshasa School of Public Health in the Democratic Republic of Congo. Together, the group will measure the distribution of malaria, drug-resistant malaria, African sleeping sickness and other infectious diseases in the Democratic Republic of Congo.

"Infectious diseases remain the leading cause of death and disability in developing countries," Meshnick said. "Current maps and prevalence data on tropical diseases are usually estimates based on samples that paint a potentially inaccurate picture. We want to help international and national health organizations get better data and maps for tropical diseases from representative population-based surveys. Better information will help guide efforts to control tropical diseases, and also will help in evaluating the effectiveness of efforts to control their spread."

The team includes geographer Mike Emch, Ph.D., associate professor in the College of Arts and Sciences, and molecular microbiologist, Melissa Miller, Ph.D., assistant professor in the pathology and laboratory medicine department in the School of Medicine. It also includes Democratic Republic of Congo scientists, which should help build expertise within the country.

Meshnick said he hoped the new lab's disease surveillance approach will become a model for similar surveillance programs in other developing countries.

"This work will help the 'poorest of the poor,' who bear the brunt of the burden of tropical diseases," Meshnick said.

The team's initial work will involve analyzing 9,000 dried blood spots collected in 2007 for tracking HIV infection.

The Gillings Innovation Labs, part of Carolina Public Health Solutions, were established in the school in 2007 and are funded through a $50 million gift pledged by Dennis and Joan Gillings. In honor of the gift, the school will be renamed the UNC Gillings School of Global Public Health on Friday (Sept. 26).

The labs' purpose is to anticipate future public health challenges and accelerate solutions through groundbreaking science, research, teaching and practice, and through interdisciplinary teams and effective translation of interventions to high-impact settings. Meshnick's is the 10th such lab announced by the school. It will begin in January 2009 and continue for two years.

Other Gillings Innovation Labs have been established to develop vaccines for respiratory diseases that are simpler to store and administer than current vaccines; provide greater access to safe and clean water; improve care for the mentally ill; monitor air quality; and weigh benefits of locally grown foods.

Patric Lane | EurekAlert!
Further information:
http://www.unc.edu
http://www.sph.unc.edu/accelerate

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>