Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMMS researchers develop new technology to screen and analyze genetic mutations

08.04.2011
Novel approach points to new methods for screening for drug resistance

A single change to even one of the thousands of DNA codes that make up each gene in the human genome can result in severe diseases such as cancer, cystic fibrosis, muscular dystrophy or Huntington's Disease.

A similarly minor change in the DNA of a virus or bacteria can give rise to drug resistant strains that are difficult for physicians to treat with standard drug therapies. For these reasons, scientists have long sought ways to study the effects genetic mutations can have on an organism but have been hampered in these efforts by an inability to easily and efficiently produce and analyze the thousands of potential changes possible in even one small gene.

A new study by scientists at the University of Massachusetts Medical School, published in Early Edition of the Proceedings of the National Academy of Sciences online on April 4, describes a novel technique to produce all potential individual mutations and using deep sequencing technology simultaneously analyze each change's impact on the cell.

"In nature, genetic mutations actually occur infrequently and at random," said Daniel N. A. Bolon, PhD, assistant professor of biochemistry & molecular pharmacology and lead author of the PNAS study. "But these small changes have profound consequences on an organism's ability to survive. We've developed an approach that allows us to generate all the possible individual changes and, at the same time in the same test tube, study the impact of each change."

Using sequencing technology inspired by the human genome project, Bolon and colleagues have developed a method called EMPIRIC to analyze hundreds of different mutations in a single test tube. Ordinarily used to read a DNA sequence over an entire genome, Bolon utilizes the ability of this band-aid-sized sequencing chip to accurately count and record the abundance of hundreds of distinct cells in a test tube that differ by individual mutations. At its most simple, mutations that are beneficial will grow rapidly and increase in abundance, while mutations that are harmful will decrease in relative abundance.

Examining a nine amino acid region essential for the survival of baker's yeast, Bolon and colleagues were able to analyze 180 different amino acid substitutions representing more than 500 different DNA mutations for this small genetic region. "The key breakthrough was the realization that we could analyze a multitude of mutations at the same time, in the same test tube," said Bolon. "What would have taken years of work and thousands of test tubes can be done in a matter of days in one test tube."

Their findings were consistent with current models of molecular evolution in which a large number of mutations are harmful, but the great majority of mutations have little to no effect on the cell's function. With this approach, scientists can gain new insights into a host of biological questions including how environmental pressures influence evolutionary processes on a genetic level, what mutations are likely to cause genetic disease and how to screen viruses for mutations that might lead to drug resistance.

Viruses, because of their relatively limited genetic code, represent an ideal target for this novel approach. For example, with this new technique, an entire viral genome can be systematically screened for its likelihood to develop resistance to drug therapies. By inserting the drug into the test tube with all the possible mutations, scientists can systematically identify all individual viral mutations that increase drug resistance. Currently, resistance screening techniques are less effective because they rely on testing random mutations, leaving the possibility that an untested mutation might lead to resistance. Systematically identifying resistant mutations may provide new routes to the development of therapeutics and vaccines that minimize resistance.

"One of the truly exciting aspects about this approach is that it's so general," said Bolon. "While our experiments were carried out on yeast cells, it can be applied to any fast growing cell that can be genetically manipulated such as cancer cells, viruses or bacteria."

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $255 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts. For more information, visit www.umassmed.edu.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>