Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UMass Amherst Food Scientist on School Meals Panel

The National School Lunch Program and the School Breakfast Program should adopt a new set of nutrient targets and standards for menu planning, says a new expert report released today by the Institute of Medicine (IOM).

Yeonhwa Park, assistant professor of food science at the University of Massachusetts Amherst, was the only food scientist on the 15-member national Committee on Nutrition Standards for National School Lunch and Breakfast Programs, sponsored by the U.S. Department of Agriculture.

Committee members recommend targets and standards to limit sodium and maximum calories, and encourage children to eat more fruits, vegetables, and whole grains. The recommendations would bring school meals in line with the latest Dietary Guidelines for Americans and Dietary Reference Intakes. The programs’ current nutrition standards and meal requirements are based on the 1995 dietary guidelines and the 1989 recommended dietary allowances.

UMass Amherst’s Park brought special expertise to the panel in two areas ¯ how to reduce sodium content and how to increase the amount of whole grains in foods in school breakfast and lunch in a form that students will accept and at an affordable price.

In the case of whole grains, research shows there is good acceptance among school-age children for certain grain products to contain up to 70 percent whole grain, she says. However, due to their limited availability and cost at present, the panel recommended that schools try to reach a target goal of at least 50 percent whole-grain-rich content in school lunches and breakfasts within three years of final requirements being adopted for school meals.

For sodium, the problem is that reducing it means foods taste different and are less likely to be accepted by children. Thus the panel recommended a stepwise reduction over the next 10 years, with a goal of an approximate 10 percent decrease for every two-year period. For example, recent data show that a typical high school lunch contains around 1,600 milligrams of sodium. The report recommends that lunches for high school students should eventually contain no more than 740 mg. The committee recognized that consumers are less likely to detect incremental changes, and it is unrealistic to expect food preparers to make rapid, dramatic changes and still produce meals children will eat.

Park says, “We hope industry will also respond and that students will accept substitutes. We thought the gradual reduction of sodium over ten years was reasonable and worth a try.”

For the first time, the committee also set maximum calorie levels. Lunches should not exceed 650 calories for students in grades K-five, 700 for children in grades 6–8, and 850 for those in grades 9–12. Breakfast calories should not exceed 500, 550 and 600 respectively for these grade groups.

According to the IOM, the National School Lunch Program is available in 99 percent of United States public schools and in 83 percent of private and public schools combined. The School Breakfast Program is available in 85 percent of public schools. About 30.6 million school children, 60 percent, participated daily in the school lunch program in fiscal year 2007, and 10.1 million children ate school breakfasts. Participating schools served about 5.1 billion lunches and 1.7 billion breakfasts that year.

As the report also acknowledges, implementing the recommendations will likely raise the costs of providing school meals ¯ particularly breakfasts ¯ mainly because of increased fruit, vegetables and whole-grain foods to be served. A combination of higher federal meal reimbursement, capital investment and additional money for training food service operators will be needed to make the necessary changes in school cafeterias.

The amount of vegetables offered should increase to 3/4 cup per day for grades K-eight, and 1 cup per day for grades nine-12. Schools should offer starchy vegetables such as potatoes less often and provide at least 1/2 cup each of green leafy vegetables, orange vegetables, and legumes per week. Students should be provided 1 cup of 1 percent or nonfat milk at breakfast and at lunch each day. This will help lower calories.

The amount of meat or meat alternatives in lunches should be 2 ounces on most days for all grades, but schools should have the flexibility to provide greater amounts to students in higher grades. The amount of meat or meat alternatives in breakfasts should be 1 ounce per day for children in grades K-eight and 2 ounces on most days for high school students.

Schools that allow students to decline individual items rather than take a whole meal should require them to take at least one serving of fruits or vegetables at each meal. The meal programs currently have no such requirements. The amount of fruit offered in breakfasts should increase to 1 cup per day for all grades and in lunches should increase to 1 cup per day for students in grades nine-12. No more than half the fruit schools provide should be in the form of juice.

The IOM recommended nutrition standards for food and beverages available a la carte in school stores and vending machines, which compete with school meals, in a 2008 report, Nutrition Standards for Foods in Schools.

Yeonhwa Park | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>