Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Food Scientist on School Meals Panel

22.10.2009
The National School Lunch Program and the School Breakfast Program should adopt a new set of nutrient targets and standards for menu planning, says a new expert report released today by the Institute of Medicine (IOM).

Yeonhwa Park, assistant professor of food science at the University of Massachusetts Amherst, was the only food scientist on the 15-member national Committee on Nutrition Standards for National School Lunch and Breakfast Programs, sponsored by the U.S. Department of Agriculture.

Committee members recommend targets and standards to limit sodium and maximum calories, and encourage children to eat more fruits, vegetables, and whole grains. The recommendations would bring school meals in line with the latest Dietary Guidelines for Americans and Dietary Reference Intakes. The programs’ current nutrition standards and meal requirements are based on the 1995 dietary guidelines and the 1989 recommended dietary allowances.

UMass Amherst’s Park brought special expertise to the panel in two areas ¯ how to reduce sodium content and how to increase the amount of whole grains in foods in school breakfast and lunch in a form that students will accept and at an affordable price.

In the case of whole grains, research shows there is good acceptance among school-age children for certain grain products to contain up to 70 percent whole grain, she says. However, due to their limited availability and cost at present, the panel recommended that schools try to reach a target goal of at least 50 percent whole-grain-rich content in school lunches and breakfasts within three years of final requirements being adopted for school meals.

For sodium, the problem is that reducing it means foods taste different and are less likely to be accepted by children. Thus the panel recommended a stepwise reduction over the next 10 years, with a goal of an approximate 10 percent decrease for every two-year period. For example, recent data show that a typical high school lunch contains around 1,600 milligrams of sodium. The report recommends that lunches for high school students should eventually contain no more than 740 mg. The committee recognized that consumers are less likely to detect incremental changes, and it is unrealistic to expect food preparers to make rapid, dramatic changes and still produce meals children will eat.

Park says, “We hope industry will also respond and that students will accept substitutes. We thought the gradual reduction of sodium over ten years was reasonable and worth a try.”

For the first time, the committee also set maximum calorie levels. Lunches should not exceed 650 calories for students in grades K-five, 700 for children in grades 6–8, and 850 for those in grades 9–12. Breakfast calories should not exceed 500, 550 and 600 respectively for these grade groups.

According to the IOM, the National School Lunch Program is available in 99 percent of United States public schools and in 83 percent of private and public schools combined. The School Breakfast Program is available in 85 percent of public schools. About 30.6 million school children, 60 percent, participated daily in the school lunch program in fiscal year 2007, and 10.1 million children ate school breakfasts. Participating schools served about 5.1 billion lunches and 1.7 billion breakfasts that year.

As the report also acknowledges, implementing the recommendations will likely raise the costs of providing school meals ¯ particularly breakfasts ¯ mainly because of increased fruit, vegetables and whole-grain foods to be served. A combination of higher federal meal reimbursement, capital investment and additional money for training food service operators will be needed to make the necessary changes in school cafeterias.

The amount of vegetables offered should increase to 3/4 cup per day for grades K-eight, and 1 cup per day for grades nine-12. Schools should offer starchy vegetables such as potatoes less often and provide at least 1/2 cup each of green leafy vegetables, orange vegetables, and legumes per week. Students should be provided 1 cup of 1 percent or nonfat milk at breakfast and at lunch each day. This will help lower calories.

The amount of meat or meat alternatives in lunches should be 2 ounces on most days for all grades, but schools should have the flexibility to provide greater amounts to students in higher grades. The amount of meat or meat alternatives in breakfasts should be 1 ounce per day for children in grades K-eight and 2 ounces on most days for high school students.

Schools that allow students to decline individual items rather than take a whole meal should require them to take at least one serving of fruits or vegetables at each meal. The meal programs currently have no such requirements. The amount of fruit offered in breakfasts should increase to 1 cup per day for all grades and in lunches should increase to 1 cup per day for students in grades nine-12. No more than half the fruit schools provide should be in the form of juice.

The IOM recommended nutrition standards for food and beverages available a la carte in school stores and vending machines, which compete with school meals, in a 2008 report, Nutrition Standards for Foods in Schools.

Yeonhwa Park | Newswise Science News
Further information:
http://www.foodsci.umass.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>