Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound directed to the human brain can boost sensory performance

13.01.2014
Virginia Tech Carilion Research Institute scientists say ultrasound ranks with leading neuromodulation techniques in achieving spatial resolution

Whales, bats, and even praying mantises use ultrasound as a sensory guidance system — and now a new study has found that ultrasound can modulate brain activity to heighten sensory perception in humans.

Virginia Tech Carilion Research Institute scientists have demonstrated that ultrasound directed to a specific region of the brain can boost performance in sensory discrimination. The study, published online Jan. 12 in Nature Neuroscience, provides the first demonstration that low-intensity, transcranial-focused ultrasound can modulate human brain activity to enhance perception.

"Ultrasound has great potential for bringing unprecedented resolution to the growing trend of mapping the human brain's connectivity," said William "Jamie" Tyler, an assistant professor at the Virginia Tech Carilion Research Institute, who led the study. "So we decided to look at the effects of ultrasound on the region of the brain responsible for processing tactile sensory inputs."

The scientists delivered focused ultrasound to an area of the cerebral cortex that processes sensory information received from the hand. To stimulate the median nerve — a major nerve that runs down the arm and the only one that passes through the carpal tunnel — they placed a small electrode on the wrist of human volunteers and recorded their brain responses using electroencephalography, or EEG. Then, just before stimulating the nerve, they began delivering ultrasound to the targeted brain region.

The scientists found that the ultrasound both decreased the EEG signal and weakened the brain waves responsible for encoding tactile stimulation.

The scientists then administered two classic neurological tests: the two-point discrimination test, which measures a subject's ability to distinguish whether two nearby objects touching the skin are truly two distinct points, rather than one; and the frequency discrimination task, a test that measures sensitivity to the frequency of a chain of air puffs.

What the scientists found was unexpected.

The subjects receiving ultrasound showed significant improvements in their ability to distinguish pins at closer distances and to discriminate small frequency differences between successive air puffs.

"Our observations surprised us," said Tyler. "Even though the brain waves associated with the tactile stimulation had weakened, people actually got better at detecting differences in sensations."

Why would suppression of brain responses to sensory stimulation heighten perception? Tyler speculates that the ultrasound affected an important neurological balance.

"It seems paradoxical, but we suspect that the particular ultrasound waveform we used in the study alters the balance of synaptic inhibition and excitation between neighboring neurons within the cerebral cortex," Tyler said. "We believe focused ultrasound changed the balance of ongoing excitation and inhibition processing sensory stimuli in the brain region targeted and that this shift prevented the spatial spread of excitation in response to stimuli resulting in a functional improvement in perception."

To understand how well they could pinpoint the effect, the research team moved the acoustic beam one centimeter in either direction of the original site of brain stimulation – and the effect disappeared.

"That means we can use ultrasound to target an area of the brain as small as the size of an M&M," Tyler said. "This finding represents a new way of noninvasively modulating human brain activity with a better spatial resolution than anything currently available."

Based on the findings of the current study and an earlier one, the researchers concluded that ultrasound has a greater spatial resolution than two other leading noninvasive brain stimulation technologies — transcranial magnetic stimulation, which uses magnets to activate the brain, and transcranial direct current stimulation, which uses weak electrical currents delivered directly to the brain through electrodes placed on the head.

"Gaining a better understanding of how pulsed ultrasound affects the balance of synaptic inhibition and excitation in targeted brain regions — as well as how it influences the activity of local circuits versus long-range connections — will help us make more precise maps of the richly interconnected synaptic circuits in the human brain," said Wynn Legon, the study's first author and a postdoctoral scholar at the Virginia Tech Carilion Research Institute. "We hope to continue to extend the capabilities of ultrasound for noninvasively tweaking brain circuits to help us understand how the human brain works."

"The work by Jamie Tyler and his colleagues is at the forefront of the coming tsunami of developing new safe yet effective noninvasive ways to modulate the flow of information in cellular circuits within the living human brain," said Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute and a neuroscientist who specializes in brain plasticity. "This approach is providing the technology and proof of principle for precise activation of neural circuits for a range of important uses, including potential treatments for neurodegenerative disorders, psychiatric diseases, and behavioral disorders. Moreover, it arms the neuroscientific community with a powerful new tool to explore the function of the healthy human brain, helping us understand cognition, decision-making, and thought. This is just the type of breakthrough called for in President Obama's BRAIN Initiative to enable dramatic new approaches for exploring the functional circuitry of the living human brain and for treating Alzheimer's disease and other disorders."

A team of Virginia Tech Carilion Research Institute scientists — including Tomokazu Sato, Alexander Opitz, Aaron Barbour, and Amanda Williams, along with Virginia Tech graduate student Jerel Mueller of Raleigh, N.C. — joined Tyler and Legon in conducting the research.

In addition to his position at the institute, Tyler is an assistant professor of biomedical engineering and sciences at the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences. In 2012, he shared a Technological Innovation Award from the McKnight Endowment for Neuroscience to work on developing ultrasound as a noninvasive tool for modulating brain activity.

"In neuroscience, it's easy to disrupt things," said Tyler. "We can distract you, make you feel numb, trick you with optical illusions. It's easy to make things worse, but it's hard to make them better. These findings make us believe we're on the right path."

Paula Byron | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>