Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasensitive detector promises improved treatment of viral respiratory infections

30.06.2009
A Vanderbilt chemist and a biomedical engineer have teamed up to develop a respiratory virus detector that is sensitive enough to detect an infection at an early stage, takes only a few minutes to return a result and is simple enough to be performed in a pediatrician's office.

Writing in The Analyst – a journal published by the Royal Society of Chemistry – the developers report that their technique, which uses DNA hairpins attached to gold filaments, can detect the presence of respiratory syncytial virus (RSV) – a leading cause of respiratory infections in infants and young children – at substantially lower levels than the standard laboratory assay.

"We hope that our research will help us break out of the catch-22 that is holding back major advances in the treatment of respiratory viruses," says Associate Professor of Chemistry David Wright, who is working with Professor of Biomedical Engineering Frederick "Rick" Haselton on the new detection method.

According to the chemist, major pharmaceutical companies are not investing in the development of antiviral drugs for RSV and the other major respiratory viruses because there is no way to detect the infections early enough for the drugs to work effectively without harmful side-effects. "There are antiviral compounds out there – we have discovered some of them in my lab – that would work if we can detect the virus early enough, before there is too much virus in the system," he says.

In addition, the lack of a reliable early detection system adds to the growing problem of antibiotic resistance. The symptoms of respiratory infections caused by viral agents are nearly identical to those caused by bacteria. As a result, antibiotics, which target bacteria, are often incorrectly prescribed for viral infections. Not only is this ineffective, but it also increases the number of antibiotic-resistant strains.

Currently, there are several standard tests for RSV including culturing the virus, polymerase chain reaction (PCR) and the enzyme-linked immunosorbent assay (ELISA). To have any of these tests done, doctors must send a mucous sample from a patient to a special laboratory. When combined with delivery times, backlogs and other delays, it frequently takes a day or more to get the results. Unfortunately, respiratory viruses multiply so rapidly that this can be too late for antiviral drugs to work, Wright says.

By contrast, "our system could easily be packaged in a disposable device about the size of a ballpoint pen," says Haselton. To perform a test, all that would be required is to pull off a cap that will expose a length of gold wire, dip the wire in the sample, pull the wire through the device and put the exposed wire into a fluorescence scanner. If it lights up, then the virus is present.

The new detector design is a combination of two existing technologies.

One is the filament-based antibody recognition assay (FARA) developed several years ago by Haselton and patented by Vanderbilt. FARA uses antibodies – special proteins produced by the immune system that binds to specific foreign substances – that are coated on the surface of a polyester filament. When the coated filament is exposed to a sample, if it contains any of the target molecules, they stick to the antibodies, forming complexes that can be detected with fluorescent dyes. One advantage of this approach is that a sample can be put through different processing steps simply by pulling the filament through a series of small chambers. In the RSV detection application, the chambers contain washing solutions that remove non-specific binding molecules.

"Originally we thought that we would have to put special seals between the chambers but we found that if we make the openings small enough, then the solutions in the chambers stay in place as we pull the wire through," says Haselton.

The second technology is based on molecular beacon probes, an approach often used in PCR. The probes consist of short lengths of single-strand DNA that normally form a hairpin shape but straighten out when they are bound to a target molecule. A fluorescent dye molecule is attached to one leg of the hairpin and a molecule that quenches its fluorescence is attached to the other. When the probe is in its hairpin configuration, the dye and quencher molecules lay side by side so the probe does not fluoresce. When it is bound to a target, such as a piece of viral RNA, the ends spring apart, turning on the probe's fluorescence.

The Vanderbilt researchers realized that if they attached molecular beacons to a gold-coated filament, the gold could theoretically replace the quencher molecule and inhibit the beacon's fluorescence. However, they had to find a linking molecule – the molecule that attaches the beacon to the wire – that was just the right length to make it work.

Once they solved this problem, the researchers tested the sensitivity of the new system. They found that it could detect the presence of RSV virus particles at levels that are 200 times below the minimum detection level of the standard ELISA method. This extreme sensitivity combined with the basic simplicity of the approach makes it "attractive for further development as a viral detection platform," the scientists write in the Analyst article, which was published online May 15.

According to Haselton, there are two areas where further development is needed. One is sample preparation. Commercial RNA sample preparation kits are available, but they are more expensive and complex than desirable. The team is currently examining the design of a simple pull-through RNA isolation chamber. The team is also exploring ways to reduce false detections. There are a lot of other molecules in mucous besides viral RNA that can bind to some extent with the molecular beacons. However, the researchers argue that it should be possible to reduce the number of false positives significantly by adding a heating step that is calibrated to drive off the molecules that are less strongly bound to the beacons than the viral RNA.

The next major step in the development process is to see how the device performs with real patient samples.

This research was supported by grants from Vanderbilt University and the National Institutes of Health.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>