Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers hunting drugs for devastating parasitic disease

18.12.2008
Hundreds of millions of people, mainly in developing countries, are disabled by infectious diseases, according to the World Health Organization.

More than 12 million people in 88 countries are infected with leishmaniasis, a parasitic disease spread by the bite of infected sand flies. Nearly 2 million new cases are reported and about 70,000 people die from the disease annually.

Researchers at the University of Illinois at Chicago have discovered that compounds derived from a natural product can be used in developing a new drug to treat the disease.

Despite a worsening global impact of this disease, little progress has been made toward the development of new chemotherapeutics against it, says Alan Kozikowski, professor and director of UIC's Drug Discovery Program and coordinator of the project.

Drugs compounded from the toxic metal antimony have been the first-line therapeutic option for more than 50 years.

"But antimonials may cause acute pancreatitis and cardiac arrhythmia and can sometimes lead to death," Kozikowski said. Only recently, he said, have novel agents been added to the therapeutic arsenal.

Leishmaniasis can be cutaneus, which causes skin sores that leave ugly scars, or visceral, which is 100 percent fatal if left untreated.

Visceral leishmaniasis has increased in recent years due to emerging co-infections with HIV, spreading the disease to the developed countries in North America and southern Europe, Kozikowski said. The disease is normally found in tropical regions, from the rain forests in Central and South America to deserts in West Asia.

To find a starting point from which to develop a better drug, UIC postdoctoral researchers Suresh Tipparaju and Marco Pieroni synthesized a chemical "library" of more than 100 diverse compounds and screened them for biological activity against the Leishmania parasite. They observed high antiparasitic activity in a compound first isolated from streptomyces bacteria more than 20 years ago. That compound, Tipparaju said, could potentially be modified to treat leishmaniasis. It was already three times more active than miltefosine, a drug in current use, he said.

Miltefosine is the first oral drug to cure both visceral and cutaneus leishmaniasis. Despite the drug's efficacy, Tipparaju said, miltefosine is limited by its persistence in the bloodstream and long-term side effects. It is also not effective when given to patients co-infected with HIV.

The UIC researchers are attempting to develop an antiparasitic agent that is less toxic than miltefosine and that can kill the parasite inside blood cells. In addition, the researchers are investigating the mechanism of action of the new candidate compounds through a collaboration with Manlio Tolomeo of the Center for Parasitic Diseases in Palermo, Italy. Mechanistic studies could lead to further improvement of promising agents, Tipparaju said.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>