Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF analysis shows newer surgery for neck pain may be better

12.04.2011
A new surgery for cervical disc disease in the neck may restore range of motion and reduce repeat surgeries in some younger patients, according to a team of neurosurgeons from the University of California, San Francisco (UCSF) and several other medical centers that analyzed three large, randomized clinical trials comparing two different surgeries.

More than 200,000 Americans undergo surgery every year to alleviate pain and muscle weakness from the debilitating condition caused by herniated discs in the neck. For some, the team found, arthroplasty may work better.

The results do not suggest that the older surgery is ineffective or unsafe, but that arthroplasty is a viable option for some.

"For people younger than 50 who have cervical disc disease, arthroplasty is a good option," said Praveen Mummaneni, MD, of the Department of Neurosurgery at UCSF.

Mumaneni and his colleagues are presenting their analysis today at the 79th Annual Scientific Meeting of the American Association of Neurological Surgeons in Denver.

Why Fewer Is Better

Neck surgery is not cheap and requires a patient to be placed under general anesthesia and a surgical team to perform the operation in a sterile room. They are typically reserved for patients who have failed to respond to other measures such as physical therapy or drugs, such as steroids.

For decades, the standard of care in this country was a procedure called anterior cervical discectomy and fusion. In this surgery, a surgeon cuts through the front of the neck, accessing the spine and removing the herniated disc, then replacing it with a piece of bone and a plate in the neck. That creates a solid union – or fusion – between two or more vertebrae to strengthen the spine.

Arthroplasty also begins with a surgery to remove the herniated disc. But instead of fusing the spine, the surgeon replaces the missing disc with an artificial one made of steel, plastic or titanium. The idea is that the artificial disc will provide more spine mobility after surgery and less stress on adjacent discs.

While arthroplasty has become more widely used in the United States since the U.S. Food & Drug Administration approved several models of artificial discs in the last few years, it is still performed less often than in Europe, where the procedure has been available for more than a decade.

Here in the United States, the older, surgical fusion technique remains more common – in part because not all insurance companies pay for the newer procedure, as is the case in California.

Both techniques have occasional failures. In the fusion surgery, the bone may not heal, requiring further fusion surgery months or years later. In the arthroplasty surgery, the artificial disk may loosen or not fit well and may need to be replaced.

"Surprising" Results

The new analysis looked at three randomized clinical trials that enrolled 1,213 patients with cervical disc disease at medical centers across the United States – including UCSF.

In the trials, 621 patients received an artificial cervical disc and 592 patients were treated with spinal fusion. The analysis looked at outcomes two years after surgery.

The results were surprising, Mummaneni said: "While the two-year surgical results for both techniques were excellent, the rate of repeat surgery is lower for arthroplasty than for fusion at the two-year timepoint."

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>