Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB develops breakthrough technology in identification of prostate cancer cells

20.09.2011
A team of researchers at UC Santa Barbara has developed a breakthrough technology that can be used to discriminate cancerous prostate cells in bodily fluids from those that are healthy. The findings are published this week in the Proceedings of the National Academy of Sciences.

While the new technology is years away from use in a clinical setting, the researchers are nonetheless confident that it will be useful in developing a microdevice that will help in understanding when prostate cancer will metastasize, or spread to other parts of the body.


Cancerous and non-cancerous cells are incubated with silver nanoparticle biotags, and then analyzed by shining the red laser on them. The biotags are shown on the cells' surface. Those glowing red in the middle are the cancer biomarkers, and those glowing green are standard biomarkers that bind to many cell types. A high ratio of red to green is found on the cancer cells. Credit: Gary Braun and Peter Allen/UCSB

"There have been studies to find the relationship between the number of cancer cells in the blood, and the outcome of the disease," said first author Alessia Pallaoro, postdoctoral fellow in UCSB's Department of Chemistry and Biochemistry. "The higher the number of cancer cells there are in the patient's blood, the worse the prognosis.

"The cancer cells that are found in the blood are thought to be the initiators of metastasis," Pallaoro added. "It would be really important to be able to find them and recognize them within blood or other bodily fluids. This could be helpful for diagnosis and follow-ups during treatment."

The researchers explained that although the primary tumor does not kill prostate cancer patients, metastasis does. "The delay is not well understood," said Gary Braun, second author and postdoctoral fellow in the Department of Molecular, Cellular, and Developmental Biology. "There is a big focus on understanding what causes the tumor to shed cells into the blood. If you could catch them all, then you could stop metastasis. The first thing is to monitor their appearance."

The team developed a novel technique to discriminate between cancerous and non-cancerous cells using a type of laser spectroscopy called surface enhanced Raman spectroscopy (SERS) and silver nanoparticles, which are biotags.

"Silver nanoparticles emit a rich set of colors when they absorb the laser light," said Braun. "This is different than fluorescence. This new technology could be more powerful than fluorescence."

The breakthrough is in being able to include more markers in order to identify and study unique tumor cells that are different from the main tumor cells, explained Pallaoro. "These different cells must be strong enough to start a new tumor, or they must develop changes that allow them to colonize in other areas of the body," she said. "Some changes must be on the surface, which is what we are trying to detect."

The team is working to translate the technology into a diagnostic microdevice for studying cancer cells in the blood. Cells would be mixed with nanoparticles and passed through a laser, then discriminated by the ratio of two signals.

The two types of biotags used in this research have a particular affinity that is dictated by the peptide they carry on their surface. One type attaches to a cell receptor called neuropilin-1, a recently described biomarker found on the surface membrane of certain cancer cells. The other biotag binds many cell types (both cancerous and non-cancerous) and serves as a standard measure as the cells are analyzed.

In this study, the team mixed the two biotags and added them to the healthy and tumor cell cultures. The average SERS signal over a given cell image yielded a ratio of the two signals consistent with the cells' known identity.

Pallaoro said she believes the most important part of the new technique is the fact that it could be expanded by adding more colors –– different particles of different colors –– as more biomarkers are found. The team used a new biomarker discovered by scientists at UCSB and the Sanford Burnham Medical Research Institute.

The senior author of the paper is Martin Moskovits, professor in UCSB's Department of Chemistry and Biochemistry.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

Further reports about: Biochemistry CHEMISTRY UCSB cancer cells cell type new technology tumor cells

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>