Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB develops breakthrough technology in identification of prostate cancer cells

20.09.2011
A team of researchers at UC Santa Barbara has developed a breakthrough technology that can be used to discriminate cancerous prostate cells in bodily fluids from those that are healthy. The findings are published this week in the Proceedings of the National Academy of Sciences.

While the new technology is years away from use in a clinical setting, the researchers are nonetheless confident that it will be useful in developing a microdevice that will help in understanding when prostate cancer will metastasize, or spread to other parts of the body.


Cancerous and non-cancerous cells are incubated with silver nanoparticle biotags, and then analyzed by shining the red laser on them. The biotags are shown on the cells' surface. Those glowing red in the middle are the cancer biomarkers, and those glowing green are standard biomarkers that bind to many cell types. A high ratio of red to green is found on the cancer cells. Credit: Gary Braun and Peter Allen/UCSB

"There have been studies to find the relationship between the number of cancer cells in the blood, and the outcome of the disease," said first author Alessia Pallaoro, postdoctoral fellow in UCSB's Department of Chemistry and Biochemistry. "The higher the number of cancer cells there are in the patient's blood, the worse the prognosis.

"The cancer cells that are found in the blood are thought to be the initiators of metastasis," Pallaoro added. "It would be really important to be able to find them and recognize them within blood or other bodily fluids. This could be helpful for diagnosis and follow-ups during treatment."

The researchers explained that although the primary tumor does not kill prostate cancer patients, metastasis does. "The delay is not well understood," said Gary Braun, second author and postdoctoral fellow in the Department of Molecular, Cellular, and Developmental Biology. "There is a big focus on understanding what causes the tumor to shed cells into the blood. If you could catch them all, then you could stop metastasis. The first thing is to monitor their appearance."

The team developed a novel technique to discriminate between cancerous and non-cancerous cells using a type of laser spectroscopy called surface enhanced Raman spectroscopy (SERS) and silver nanoparticles, which are biotags.

"Silver nanoparticles emit a rich set of colors when they absorb the laser light," said Braun. "This is different than fluorescence. This new technology could be more powerful than fluorescence."

The breakthrough is in being able to include more markers in order to identify and study unique tumor cells that are different from the main tumor cells, explained Pallaoro. "These different cells must be strong enough to start a new tumor, or they must develop changes that allow them to colonize in other areas of the body," she said. "Some changes must be on the surface, which is what we are trying to detect."

The team is working to translate the technology into a diagnostic microdevice for studying cancer cells in the blood. Cells would be mixed with nanoparticles and passed through a laser, then discriminated by the ratio of two signals.

The two types of biotags used in this research have a particular affinity that is dictated by the peptide they carry on their surface. One type attaches to a cell receptor called neuropilin-1, a recently described biomarker found on the surface membrane of certain cancer cells. The other biotag binds many cell types (both cancerous and non-cancerous) and serves as a standard measure as the cells are analyzed.

In this study, the team mixed the two biotags and added them to the healthy and tumor cell cultures. The average SERS signal over a given cell image yielded a ratio of the two signals consistent with the cells' known identity.

Pallaoro said she believes the most important part of the new technique is the fact that it could be expanded by adding more colors –– different particles of different colors –– as more biomarkers are found. The team used a new biomarker discovered by scientists at UCSB and the Sanford Burnham Medical Research Institute.

The senior author of the paper is Martin Moskovits, professor in UCSB's Department of Chemistry and Biochemistry.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

Further reports about: Biochemistry CHEMISTRY UCSB cancer cells cell type new technology tumor cells

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>