Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study finds cholesterol regulator plays key role in development of liver scarring, cirrhosis

31.03.2011
UCLA researchers have demonstrated that a key regulator of cholesterol and fat metabolism in the liver also plays an important role in the development of liver fibrosis — the build-up of collagen scar tissue that can develop into cirrhosis. Cirrhosis, in turn, is a major cause of premature death and is incurable without a liver transplant.

Published in the March issue of the journal Gastroenterology, the study shows that liver X receptors (LXRs), master regulators of cholesterol, fat and inflammatory gene expression, also control the fibrosis-making cells of the liver, known as hepatic stellate cells.

In the face of chronic liver injury — due to excess fat, chronic viral hepatitis or alcohol abuse, for example — stellate cells become activated and launch an inflammatory and fibrotic cascade that eventually results in the build-up of collagen scar tissue in the liver.

LXRs, when stimulated, "turn on" several hundred genes that hold instructions to create proteins for carrying out bodily processes in cells, from transporting and excreting cholesterol to synthesizing fat in the liver. They have also been shown to suppress inflammatory processes in several contexts.

"Our work sets the stage for looking at new ways to modulate cholesterol and/or fat metabolism in order to have therapeutic potential for the treatment of fibrosing liver diseases," said lead author Dr. Simon Beaven, an assistant professor of digestive diseases at the David Geffen School of Medicine at UCLA.

The research was done in the laboratory of senior author Dr. Peter Tontonoz, a professor of pathology and laboratory medicine at the Geffen School of Medicine and a Howard Hughes Medical Institute investigator.

Beaven noted that the recent rise in obesity has resulted in a surge in the prevalence of a condition known as fatty liver, which can be a precursor to fibrosis and chronic liver disease. Simple fatty liver, also known as non-alcoholic fatty liver disease, or NAFLD, is one of the most common reasons patients consult a liver doctor in the United States. Cirrhosis due to fatty liver is skyrocketing and within a decade may become the most common indication for liver transplantation.

Beaven said the need to find better treatments for liver disease is crucial.

"A 'holy grail' for liver researchers is to develop anti-fibrotic treatments that target activated stellate cells in order to slow or prevent the development of cirrhosis," Beaven said. "Our study offers the first detailed look at how LXRs specifically impact the activation of hepatic stellate cells and the subsequent development of liver fibrosis in animal models."

UCLA researchers have found that LXRs normally play a role in helping to reduce the collagen-producing actions of stellate cells when the cells are "activated" by liver damage. For the study, UCLA scientists first tested how activated stellate cells taken from mice would react when a chemical that induces LXR activity was added to the cell culture.

In stellate cells from normal mice, LXRs suppressed the inflammatory and fibrosis-promoting program. But in those taken from mice genetically lacking LXRs, that same program of genes significantly increased because the inhibitory effect of LXRs was no longer present.

"We showed that LXRs dampen stellate cell activation by repressing inflammatory and collagen-producing genes," Beaven said.

To further gauge the strength of the response, scientists took the medium from the cultures of LXR-deficient cells and added it to stellate cells from normal mice. These cells then showed a markedly exaggerated inflammatory and collagen-producing response, suggesting that LXR-deficient stellate cells are secreting signals to promote fibrosis.

The researchers noted that these experiments demonstrate that LXRs control a fibrotic response in stellate cells that can have a wide influence on neighboring cells.

The scientists also found that after replicating chronic liver injury, mice without LXRs had dramatically more liver fibrosis than normal mice.

"The genetic loss of LXRs rendered the mice susceptible to developing fibrotic liver disease," Beaven said.

But LXRs are also known to have important functions in the immune system. The researchers then wanted to know whether the effects they were seeing in animals were due to changes in stellate cell activity specifically or whether immune cells — derived from bone marrow — accounted for most of the effect. After extensive testing, the researchers found no differences

in the level of liver fibrosis among normal mice and animals lacking LXRs, suggesting that the contribution from the immune system was negligible.

"This finding, along with the cell culture studies, suggests that LXRs' influence on fibrosis most likely resides in altering stellate cell function in the liver," Beaven said. "This is a critical finding and opens an entire new field of study for stellate cell biologists."

Additional studies will further identify which genes in stellate cells are activated by LXRs and help researchers better understand the role of cholesterol metabolism in the fibrotic response.

This study was funded primarily by grants from the National Institutes of Health and the Howard Hughes Medical Institute. Collaborators from the University of Southern California were funded by core grants from the NIH and the Southern California Research Center for ALPD and Cirrhosis.

Other study authors included senior investigator Dr. Peter Tontonoz of the Howard Hughes Medical Institute; Kevin Wroblewski and Cynthia Hong from Tontonoz's lab; Jiaohong Wang and Hide Tsukamoto of the Southern California Research Center for ALPD and Cirrhosis, USC's Keck School of Medicine and the Department of Veterans Affairs Greater Los Angeles Healthcare System; and Steven Bensinger of the department of pathology at the David Geffen School of Medicine at UCLA.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>