Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study finds cholesterol regulator plays key role in development of liver scarring, cirrhosis

31.03.2011
UCLA researchers have demonstrated that a key regulator of cholesterol and fat metabolism in the liver also plays an important role in the development of liver fibrosis — the build-up of collagen scar tissue that can develop into cirrhosis. Cirrhosis, in turn, is a major cause of premature death and is incurable without a liver transplant.

Published in the March issue of the journal Gastroenterology, the study shows that liver X receptors (LXRs), master regulators of cholesterol, fat and inflammatory gene expression, also control the fibrosis-making cells of the liver, known as hepatic stellate cells.

In the face of chronic liver injury — due to excess fat, chronic viral hepatitis or alcohol abuse, for example — stellate cells become activated and launch an inflammatory and fibrotic cascade that eventually results in the build-up of collagen scar tissue in the liver.

LXRs, when stimulated, "turn on" several hundred genes that hold instructions to create proteins for carrying out bodily processes in cells, from transporting and excreting cholesterol to synthesizing fat in the liver. They have also been shown to suppress inflammatory processes in several contexts.

"Our work sets the stage for looking at new ways to modulate cholesterol and/or fat metabolism in order to have therapeutic potential for the treatment of fibrosing liver diseases," said lead author Dr. Simon Beaven, an assistant professor of digestive diseases at the David Geffen School of Medicine at UCLA.

The research was done in the laboratory of senior author Dr. Peter Tontonoz, a professor of pathology and laboratory medicine at the Geffen School of Medicine and a Howard Hughes Medical Institute investigator.

Beaven noted that the recent rise in obesity has resulted in a surge in the prevalence of a condition known as fatty liver, which can be a precursor to fibrosis and chronic liver disease. Simple fatty liver, also known as non-alcoholic fatty liver disease, or NAFLD, is one of the most common reasons patients consult a liver doctor in the United States. Cirrhosis due to fatty liver is skyrocketing and within a decade may become the most common indication for liver transplantation.

Beaven said the need to find better treatments for liver disease is crucial.

"A 'holy grail' for liver researchers is to develop anti-fibrotic treatments that target activated stellate cells in order to slow or prevent the development of cirrhosis," Beaven said. "Our study offers the first detailed look at how LXRs specifically impact the activation of hepatic stellate cells and the subsequent development of liver fibrosis in animal models."

UCLA researchers have found that LXRs normally play a role in helping to reduce the collagen-producing actions of stellate cells when the cells are "activated" by liver damage. For the study, UCLA scientists first tested how activated stellate cells taken from mice would react when a chemical that induces LXR activity was added to the cell culture.

In stellate cells from normal mice, LXRs suppressed the inflammatory and fibrosis-promoting program. But in those taken from mice genetically lacking LXRs, that same program of genes significantly increased because the inhibitory effect of LXRs was no longer present.

"We showed that LXRs dampen stellate cell activation by repressing inflammatory and collagen-producing genes," Beaven said.

To further gauge the strength of the response, scientists took the medium from the cultures of LXR-deficient cells and added it to stellate cells from normal mice. These cells then showed a markedly exaggerated inflammatory and collagen-producing response, suggesting that LXR-deficient stellate cells are secreting signals to promote fibrosis.

The researchers noted that these experiments demonstrate that LXRs control a fibrotic response in stellate cells that can have a wide influence on neighboring cells.

The scientists also found that after replicating chronic liver injury, mice without LXRs had dramatically more liver fibrosis than normal mice.

"The genetic loss of LXRs rendered the mice susceptible to developing fibrotic liver disease," Beaven said.

But LXRs are also known to have important functions in the immune system. The researchers then wanted to know whether the effects they were seeing in animals were due to changes in stellate cell activity specifically or whether immune cells — derived from bone marrow — accounted for most of the effect. After extensive testing, the researchers found no differences

in the level of liver fibrosis among normal mice and animals lacking LXRs, suggesting that the contribution from the immune system was negligible.

"This finding, along with the cell culture studies, suggests that LXRs' influence on fibrosis most likely resides in altering stellate cell function in the liver," Beaven said. "This is a critical finding and opens an entire new field of study for stellate cell biologists."

Additional studies will further identify which genes in stellate cells are activated by LXRs and help researchers better understand the role of cholesterol metabolism in the fibrotic response.

This study was funded primarily by grants from the National Institutes of Health and the Howard Hughes Medical Institute. Collaborators from the University of Southern California were funded by core grants from the NIH and the Southern California Research Center for ALPD and Cirrhosis.

Other study authors included senior investigator Dr. Peter Tontonoz of the Howard Hughes Medical Institute; Kevin Wroblewski and Cynthia Hong from Tontonoz's lab; Jiaohong Wang and Hide Tsukamoto of the Southern California Research Center for ALPD and Cirrhosis, USC's Keck School of Medicine and the Department of Veterans Affairs Greater Los Angeles Healthcare System; and Steven Bensinger of the department of pathology at the David Geffen School of Medicine at UCLA.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>