Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers find potential link between auto pollution, some childhood cancers

11.04.2013
Scientists from UCLA's Fielding School of Public Health led by Julia Heck, an assistant researcher in the school's epidemiology department and a member of UCLA's Jonsson Comprehensive Cancer Center, have found a possible link between exposure to traffic-related air pollution and several childhood cancers.

The results of their study — the first to examine air pollution from traffic and a number of rarer childhood cancers — were presented on April 9 in an abstract at the annual meeting of the American Association for Cancer Research in Washington, D.C.

For the study, the UCLA researchers utilized data on 3,950 children who were enrolled in the California Cancer Registry and who were born in the state between 1998 and 2007. They estimated the amount of local traffic the children had been exposed to using California LINE Source Dispersion Modeling, version 4 (CALINE4).

Pollution exposure was estimated for the area around each child's home for each trimester of their mother's pregnancy and during their first year of life. The estimates included information on gasoline and diesel vehicles within a 1,500-meter radius buffer, traffic volumes, roadway geometry, vehicle emission rates and weather. Cancer risk was estimated using a statistical analysis known as unconditional logistic regression.

The researchers found that heightened exposure to traffic-related air pollution was associated with increases in three rare types of childhood cancer: acute lymphoblastic leukemia (white blood cell cancer), germ-cell tumors (cancers of the testicles, ovaries and other organs) and retinoblastoma (eye cancer), particularly bilateral retinoblastoma, in which both eyes are affected.

The pollution-exposure estimates were highly correlated across pregnancy trimesters and the first year of life, meaning that even in areas of high exposure, no particular period stood out as a higher-exposure time. This, the scientists said, made it difficult to determine if one period of exposure was more dangerous than any other.

"Much less is known about exposure to pollution and childhood cancer than adult cancers," Heck said. "Our innovation in this study was looking at other, more rare types of childhood cancer, such as retinoblastoma, and their possible connection to traffic-related air pollution."

Because these are rare diseases, Heck cautions that the findings need to be replicated in further studies.

The UCLA Fielding School of Public Health is dedicated to enhancing the public's health by conducting innovative research; training future leaders and health professionals; translating research into policy and practice; and serving local, national and international communities.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson Center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2012, the Jonsson Cancer Center was once again named among the nation's top 10 cancer centers by U.S. News & World Report, a ranking it has held for 12 of the last 13 years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>