Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers find potential link between auto pollution, some childhood cancers

11.04.2013
Scientists from UCLA's Fielding School of Public Health led by Julia Heck, an assistant researcher in the school's epidemiology department and a member of UCLA's Jonsson Comprehensive Cancer Center, have found a possible link between exposure to traffic-related air pollution and several childhood cancers.

The results of their study — the first to examine air pollution from traffic and a number of rarer childhood cancers — were presented on April 9 in an abstract at the annual meeting of the American Association for Cancer Research in Washington, D.C.

For the study, the UCLA researchers utilized data on 3,950 children who were enrolled in the California Cancer Registry and who were born in the state between 1998 and 2007. They estimated the amount of local traffic the children had been exposed to using California LINE Source Dispersion Modeling, version 4 (CALINE4).

Pollution exposure was estimated for the area around each child's home for each trimester of their mother's pregnancy and during their first year of life. The estimates included information on gasoline and diesel vehicles within a 1,500-meter radius buffer, traffic volumes, roadway geometry, vehicle emission rates and weather. Cancer risk was estimated using a statistical analysis known as unconditional logistic regression.

The researchers found that heightened exposure to traffic-related air pollution was associated with increases in three rare types of childhood cancer: acute lymphoblastic leukemia (white blood cell cancer), germ-cell tumors (cancers of the testicles, ovaries and other organs) and retinoblastoma (eye cancer), particularly bilateral retinoblastoma, in which both eyes are affected.

The pollution-exposure estimates were highly correlated across pregnancy trimesters and the first year of life, meaning that even in areas of high exposure, no particular period stood out as a higher-exposure time. This, the scientists said, made it difficult to determine if one period of exposure was more dangerous than any other.

"Much less is known about exposure to pollution and childhood cancer than adult cancers," Heck said. "Our innovation in this study was looking at other, more rare types of childhood cancer, such as retinoblastoma, and their possible connection to traffic-related air pollution."

Because these are rare diseases, Heck cautions that the findings need to be replicated in further studies.

The UCLA Fielding School of Public Health is dedicated to enhancing the public's health by conducting innovative research; training future leaders and health professionals; translating research into policy and practice; and serving local, national and international communities.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson Center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2012, the Jonsson Cancer Center was once again named among the nation's top 10 cancer centers by U.S. News & World Report, a ranking it has held for 12 of the last 13 years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>