Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers create tomatoes that mimic actions of good cholesterol

20.03.2013
UCLA researchers have genetically engineered tomatoes to produce a peptide that mimics the actions of good cholesterol when consumed.

Published in the April issue of the Journal of Lipid Research and featured on the cover, their early study found that mice that were fed these tomatoes in freeze-dried, ground form had less inflammation and plaque build-up in their arteries.

"This is one of the first examples of a peptide that acts like the main protein in good cholesterol and can be delivered by simply eating the plant," said senior author Dr. Alan M. Fogelman, executive chair of the department of medicine and director of the atherosclerosis research unit at the David Geffen School of Medicine at UCLA. "There was no need to isolate or purify the peptide — it was fully active after the plant was eaten."

After the tomatoes were eaten, the peptide surprisingly was found to be active in the small intestine but not in the blood, suggesting that targeting the small intestine may be a new strategy to prevent diet-induced atherosclerosis, the plaque-based disease of the arteries that can lead to heart attacks and strokes.

Specifically for the study, the team genetically engineered tomatoes to produce 6F, a small peptide that mimics the action of apoA-1, the chief protein in high-density lipoprotein (HDL or "good" cholesterol). Scientists fed the tomatoes to mice that lacked the ability to remove low-density lipoprotein (LDL or "bad" cholesterol) from their blood and readily developed inflammation and atherosclerosis when consuming a high-fat diet.

The researchers found that mice that ate the peptide-enhanced tomatoes, which accounted for 2.2 percent of their Western-style, high-fat diet, had significantly lower levels of inflammation; higher paraoxonase activity, an antioxidant enzyme associated with good cholesterol; higher levels of good cholesterol; decreased lysophosphatidic acid, a tumor- promoter that accelerates plaque build-up in the arteries in animal models; and less atherosclerotic plaque.

Several hours after the mice finished eating, the intact peptide was found in the small intestine, but no intact peptide was found in the blood. According to researchers, this strongly suggests that the peptide acted in the small intestine and was then degraded to natural amino acids before being absorbed into the blood, as is the case with the other peptides and proteins in the tomato.

"It seems likely that the mechanism of action of the peptide-enhanced tomatoes involves altering lipid metabolism in the intestine, which positively impacts cholesterol," said the study's corresponding author, Srinavasa T. Reddy, a UCLA professor of medicine and of molecular and medical pharmacology.

Previous studies performed by Fogelman's lab and other researchers around the world in animal models of disease have suggested that a large number of conditions with an inflammatory component — not just atherosclerosis — might benefit from treatment with an apoA-1 mimetic peptide, including Alzheimer's disease, ovarian and colon cancer, diabetes, asthma, and other disorders.

The immune system normally triggers an inflammatory response to an acute event such as injury or infection, which is part of the natural course of healing. But with many chronic diseases, inflammation becomes an abnormal, ongoing process with long-lasting deleterious effects in the body.

If the work in animal models applies to humans, said Fogelman, who is also the Castera Professor of Medicine at UCLA, consuming forms of genetically modified foods that contain apoA-1–related peptides could potentially help improve these conditions.

The peptide would be considered a drug if given by injection or in a purified pill form, but when it is a part of the fruit of a plant, it may be no different from a safety standpoint than the food in which it is contained — and it may be better tolerated than a drug, Fogelman said. He noted that one possibility could be the development of the peptide into a nutritional supplement.

The current study and findings resulted from years of detective work in searching for an apoA-1 peptide that could be practically produced. Peptides prior to the current 6F version have required additions that can only be made by chemical synthesis. The 6F peptide does not require these additions and can therefore be produced by genetically engineering plants.

The team chose a fruit — the tomato — that could be eaten without requiring cooking that might break down the peptide. The researchers were able to successfully genetically express the peptide in tomato plants, and the ripened fruit was then freeze-dried and ground into powder for use in the study.

"This is one of the first examples in translational research using an edible plant as a delivery vehicle for a new approach to cholesterol," said Judith Gasson, a professor of medicine and biological chemistry, director of UCLA's Jonsson Comprehensive Cancer Center and senior associate dean for research at the Geffen School of Medicine. "We will be closely watching this novel research to see if these early studies lead to human trials."

In addition, Gasson noted that this early finding and future studies may yield important and fundamental knowledge about the role of the intestine in diet-induced inflammation and atherosclerosis.

The study was supported in part by U.S. Public Health Service Research Grants HL-30568 and HL-34343 and by the Laubisch, Castera and M.K. Grey funds at UCLA. Studies on the determination of 6F in intestinal contents and plasma were partially funded by a Network Grant from the Leducq Foundation.

All of the intellectual property is owned by the UC Regents and managed by the UCLA Office of Intellectual Property and Industry Sponsored Research. The technology is currently licensed exclusively to Bruin Pharma Inc. Authors Alan M. Fogelman, Mohamad Navab and Srinivasa T. Reddy are pincipals in Bruin Pharma. Fogelman is an officer in the start-up company. Other disclosures are available in the manuscript.

Other authors included Arnab Chattopadhyay, Mohamed Navab, Greg Hough, David Meriwether, Victor Grijalva, James R. Springstead, Ryan Namiri-Kalantari, Brian J. Van Lenten and Alan C. Wagner of the department of medicine at the David Geffen School of Medicine at UCLA; Robin Farias-Eisener, Feng Gao and Feng Su of the department of obstetrics and gynecology at the Geffen School of Medicine; and Mayakonda N. Palgnachari and G.M. Anantharamaiah of department of medicine at the University of Alabama, Birmingham.

For more news, visit the UCLA Newsroom and follow us on Twitter

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>