Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers create tomatoes that mimic actions of good cholesterol

20.03.2013
UCLA researchers have genetically engineered tomatoes to produce a peptide that mimics the actions of good cholesterol when consumed.

Published in the April issue of the Journal of Lipid Research and featured on the cover, their early study found that mice that were fed these tomatoes in freeze-dried, ground form had less inflammation and plaque build-up in their arteries.

"This is one of the first examples of a peptide that acts like the main protein in good cholesterol and can be delivered by simply eating the plant," said senior author Dr. Alan M. Fogelman, executive chair of the department of medicine and director of the atherosclerosis research unit at the David Geffen School of Medicine at UCLA. "There was no need to isolate or purify the peptide — it was fully active after the plant was eaten."

After the tomatoes were eaten, the peptide surprisingly was found to be active in the small intestine but not in the blood, suggesting that targeting the small intestine may be a new strategy to prevent diet-induced atherosclerosis, the plaque-based disease of the arteries that can lead to heart attacks and strokes.

Specifically for the study, the team genetically engineered tomatoes to produce 6F, a small peptide that mimics the action of apoA-1, the chief protein in high-density lipoprotein (HDL or "good" cholesterol). Scientists fed the tomatoes to mice that lacked the ability to remove low-density lipoprotein (LDL or "bad" cholesterol) from their blood and readily developed inflammation and atherosclerosis when consuming a high-fat diet.

The researchers found that mice that ate the peptide-enhanced tomatoes, which accounted for 2.2 percent of their Western-style, high-fat diet, had significantly lower levels of inflammation; higher paraoxonase activity, an antioxidant enzyme associated with good cholesterol; higher levels of good cholesterol; decreased lysophosphatidic acid, a tumor- promoter that accelerates plaque build-up in the arteries in animal models; and less atherosclerotic plaque.

Several hours after the mice finished eating, the intact peptide was found in the small intestine, but no intact peptide was found in the blood. According to researchers, this strongly suggests that the peptide acted in the small intestine and was then degraded to natural amino acids before being absorbed into the blood, as is the case with the other peptides and proteins in the tomato.

"It seems likely that the mechanism of action of the peptide-enhanced tomatoes involves altering lipid metabolism in the intestine, which positively impacts cholesterol," said the study's corresponding author, Srinavasa T. Reddy, a UCLA professor of medicine and of molecular and medical pharmacology.

Previous studies performed by Fogelman's lab and other researchers around the world in animal models of disease have suggested that a large number of conditions with an inflammatory component — not just atherosclerosis — might benefit from treatment with an apoA-1 mimetic peptide, including Alzheimer's disease, ovarian and colon cancer, diabetes, asthma, and other disorders.

The immune system normally triggers an inflammatory response to an acute event such as injury or infection, which is part of the natural course of healing. But with many chronic diseases, inflammation becomes an abnormal, ongoing process with long-lasting deleterious effects in the body.

If the work in animal models applies to humans, said Fogelman, who is also the Castera Professor of Medicine at UCLA, consuming forms of genetically modified foods that contain apoA-1–related peptides could potentially help improve these conditions.

The peptide would be considered a drug if given by injection or in a purified pill form, but when it is a part of the fruit of a plant, it may be no different from a safety standpoint than the food in which it is contained — and it may be better tolerated than a drug, Fogelman said. He noted that one possibility could be the development of the peptide into a nutritional supplement.

The current study and findings resulted from years of detective work in searching for an apoA-1 peptide that could be practically produced. Peptides prior to the current 6F version have required additions that can only be made by chemical synthesis. The 6F peptide does not require these additions and can therefore be produced by genetically engineering plants.

The team chose a fruit — the tomato — that could be eaten without requiring cooking that might break down the peptide. The researchers were able to successfully genetically express the peptide in tomato plants, and the ripened fruit was then freeze-dried and ground into powder for use in the study.

"This is one of the first examples in translational research using an edible plant as a delivery vehicle for a new approach to cholesterol," said Judith Gasson, a professor of medicine and biological chemistry, director of UCLA's Jonsson Comprehensive Cancer Center and senior associate dean for research at the Geffen School of Medicine. "We will be closely watching this novel research to see if these early studies lead to human trials."

In addition, Gasson noted that this early finding and future studies may yield important and fundamental knowledge about the role of the intestine in diet-induced inflammation and atherosclerosis.

The study was supported in part by U.S. Public Health Service Research Grants HL-30568 and HL-34343 and by the Laubisch, Castera and M.K. Grey funds at UCLA. Studies on the determination of 6F in intestinal contents and plasma were partially funded by a Network Grant from the Leducq Foundation.

All of the intellectual property is owned by the UC Regents and managed by the UCLA Office of Intellectual Property and Industry Sponsored Research. The technology is currently licensed exclusively to Bruin Pharma Inc. Authors Alan M. Fogelman, Mohamad Navab and Srinivasa T. Reddy are pincipals in Bruin Pharma. Fogelman is an officer in the start-up company. Other disclosures are available in the manuscript.

Other authors included Arnab Chattopadhyay, Mohamed Navab, Greg Hough, David Meriwether, Victor Grijalva, James R. Springstead, Ryan Namiri-Kalantari, Brian J. Van Lenten and Alan C. Wagner of the department of medicine at the David Geffen School of Medicine at UCLA; Robin Farias-Eisener, Feng Gao and Feng Su of the department of obstetrics and gynecology at the Geffen School of Medicine; and Mayakonda N. Palgnachari and G.M. Anantharamaiah of department of medicine at the University of Alabama, Birmingham.

For more news, visit the UCLA Newsroom and follow us on Twitter

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>