Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA cancer scientists identify liposarcoma tumors that respond to chemotherapy

11.12.2012
Using a novel strategy, team finds tumors that can be imaged by FAC PET

Liposarcoma, the most common type of sarcoma, is an often lethal form of cancer that develops in fat cells. It is particularly deadly, in part, because the tumors are not consistently visible with positron emission tomography (PET) scans that use a common probe called FDG and because they frequently do not respond to chemotherapy.

Now, using a strategy that tracks cancer cells' consumption of nucleosides, a team of researchers at UCLA's Jonsson Comprehensive Center has identified a group of liposarcoma tumors that can be imaged by PET scanning using a tracer substance known as FAC. Furthermore, they have found that these tumors are sensitive to chemotherapy.

The team's findings are published online in the journal Cancer Discovery and will appear in an upcoming print edition.

Led by Jonsson Cancer Center researcher Heather Christofk, an assistant professor of molecular and medical pharmacology at UCLA, the scientists employed a metabolomic strategy that detected nucleoside salvage activity in liposarcoma cells taken from patient samples, cells grown in the laboratory and cells grown in mouse models. The nucleoside activity was visible using PET with the UCLA-developed FAC probe (FAC PET), which measures the activity of the DNA salvage pathway, a fundamental cell biochemical pathway that acts as a sort of recycling mechanism to help with DNA replication and repair.

FAC was created by slightly altering the molecular structure of the standard chemotherapy drug gemcitabine, and in the current study, the UCLA research team discovered that the liposarcoma cells with high nucleoside salvage activity were sensitive to gemcitabine chemotherapy.

In clinical practice, this strategy might be used to identify liposarcoma patients, at the time of diagnosis, who would respond well to gemcitabine chemotherapy, saving time on other treatments and possibly extending the lives of this sub-group of patients.

"It was a satisfying study because it has translational potential for liposarcoma patients now — and this is a deadly disease," Christofk said. "Our metabolomic strategy is also generalizable to treatment strategies for other cancers, and that is something we hope to do."

The study was a collaboration between basic scientists and clinicians, following the translational paradigm of bench-to-bedside discoveries.

"This was an outstanding transdisciplinary project between a diverse group of physician scientists and basic scientists that translates molecular oncology from the laboratory to the clinic in a rapid and clinically relevant manner," said Dr. Fritz Eilber, an associate professor of surgery and of molecular and medical pharmacology at UCLA and an investigator on the study. "The findings from this work can be used to directly impact the care of patients with this morbid and lethal malignancy."

The research was supported in part by NIH grant P50CA0863062. Christofk is a Damon Runyon–Rachleff Innovation awardee, supported in part by the Damon Runyon Cancer Research Foundation, the Searle Scholars Program, the NIH Director's New Innovator Award (DP2 OD008454-01) and the Caltech/UCLA Nanosystems Biology Cancer Center (NCI U54 CA151819).

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson Center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2012, the Jonsson Cancer Center was once again named among the nation's top 10 cancer centers by U.S. News & World Report, a ranking it has held for 12 of the last 13 years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>