Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA cancer scientists identify liposarcoma tumors that respond to chemotherapy

11.12.2012
Using a novel strategy, team finds tumors that can be imaged by FAC PET

Liposarcoma, the most common type of sarcoma, is an often lethal form of cancer that develops in fat cells. It is particularly deadly, in part, because the tumors are not consistently visible with positron emission tomography (PET) scans that use a common probe called FDG and because they frequently do not respond to chemotherapy.

Now, using a strategy that tracks cancer cells' consumption of nucleosides, a team of researchers at UCLA's Jonsson Comprehensive Center has identified a group of liposarcoma tumors that can be imaged by PET scanning using a tracer substance known as FAC. Furthermore, they have found that these tumors are sensitive to chemotherapy.

The team's findings are published online in the journal Cancer Discovery and will appear in an upcoming print edition.

Led by Jonsson Cancer Center researcher Heather Christofk, an assistant professor of molecular and medical pharmacology at UCLA, the scientists employed a metabolomic strategy that detected nucleoside salvage activity in liposarcoma cells taken from patient samples, cells grown in the laboratory and cells grown in mouse models. The nucleoside activity was visible using PET with the UCLA-developed FAC probe (FAC PET), which measures the activity of the DNA salvage pathway, a fundamental cell biochemical pathway that acts as a sort of recycling mechanism to help with DNA replication and repair.

FAC was created by slightly altering the molecular structure of the standard chemotherapy drug gemcitabine, and in the current study, the UCLA research team discovered that the liposarcoma cells with high nucleoside salvage activity were sensitive to gemcitabine chemotherapy.

In clinical practice, this strategy might be used to identify liposarcoma patients, at the time of diagnosis, who would respond well to gemcitabine chemotherapy, saving time on other treatments and possibly extending the lives of this sub-group of patients.

"It was a satisfying study because it has translational potential for liposarcoma patients now — and this is a deadly disease," Christofk said. "Our metabolomic strategy is also generalizable to treatment strategies for other cancers, and that is something we hope to do."

The study was a collaboration between basic scientists and clinicians, following the translational paradigm of bench-to-bedside discoveries.

"This was an outstanding transdisciplinary project between a diverse group of physician scientists and basic scientists that translates molecular oncology from the laboratory to the clinic in a rapid and clinically relevant manner," said Dr. Fritz Eilber, an associate professor of surgery and of molecular and medical pharmacology at UCLA and an investigator on the study. "The findings from this work can be used to directly impact the care of patients with this morbid and lethal malignancy."

The research was supported in part by NIH grant P50CA0863062. Christofk is a Damon Runyon–Rachleff Innovation awardee, supported in part by the Damon Runyon Cancer Research Foundation, the Searle Scholars Program, the NIH Director's New Innovator Award (DP2 OD008454-01) and the Caltech/UCLA Nanosystems Biology Cancer Center (NCI U54 CA151819).

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson Center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2012, the Jonsson Cancer Center was once again named among the nation's top 10 cancer centers by U.S. News & World Report, a ranking it has held for 12 of the last 13 years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>