Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC to test targeted treatment for prostate cancer

The American Cancer Society estimates one man in six will get prostate cancer during his lifetime, making it the second-leading cause of cancer death in men. With a new partnership with Areva Med, UC researchers will investigate the use of a new drug in stopping the growth of prostate cancer tumors.

In the study, UC researchers in the lab of Zhongyun Dong, PhD, will test the efficacy of a new agent targeted against a specific protein on the surface of the tumor.

"It's been shown that human prostate cancer cells overexpress some proteins on their surface," says Dong, an associate professor of hematology oncology in the department of internal medicine. "This overexpression presents a novel target for management of advanced prostate cancer."

Dong says previous radiation therapy targeting these proteins has been shown to inhibit tumor growth in several animal models. UC's study will be the first to explore this approach for prostate tumors. In the work, researchers will bind the isotope 212-lead to an antibody targeting one of these proteins.

"When administered intravenously, the AREVA Med 2120lead-antibody is designed to bind to the tumor's surface, emit alpha particles in and selectively destroy the tumor cells," says Dong.

In the study, expected to run through the end of the year, researchers will measure the toxicity of the treatment and its efficacy in inhibiting cancer cell growth. Data will then be gathered to support phase-1 clinical trials in patients with advanced prostate cancer.

According to hematology oncology professor Olivier Rixe, MD, PhD, the agent represents a more targeted radiation therapy for cancer treatment. Rixe is the director of the UC's recently launched phase-1 clinical trials unit at the newly established Early Drug Development Program.

"Targeting a monoclonal antibody against this protein is not new," says Rixe. "What's new is that we will load the antibody with an isotope that can directly target the protein on the cancer cell and deliver very localized radiation to this specific target of the cancer.

"It's a very interesting concept for drug delivery and a novel strategy for cancer treatment."

Neither Rixe nor Dong report any financial interest in Areva Med.

Katy Cosse | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>