Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis pain research may pave the way to understanding and controlling chronic pain

09.03.2011
Researchers at the University of California, Davis have discovered a "cross-talk" between two major biological pathways that involve pain—research that may pave the way to new approaches to understanding and controlling chronic pain.

And they did it with something old, new, practical and basic.

The newly published research reveals that analgesia mediated by inhibitors of the enzyme, soluble epoxide hydrolase (sEH), is dependent on a pain-mediating second messenger known as cyclic adenosinemonophosphate or cAMP.

"The interaction of many complex biological pathways is essential for the development of persistent pain, whether inflammatory or neuropathic," said lead researcher Bora Inceoglou of the Bruce Hammock lab, UC Davis Department of Entomology. Inflammatory pain includes arthritis, and neuropathic pain is linked to diabetes and other diseases, and trauma.

"Pain is a major health concern and painkiller medications or analgesics do different things," Inceoglu said. Painkilling medications may target the pain, but have side effects or lack a broad-spectrum efficacy.

The collaborative study, the work of scientists in the UC Davis Department of Entomology, UC Davis Cancer Center, UC Davis School of Medicine and the School of Veterinary Medicine, is published in the March 7th early edition of the Proceedings of the National Academy of Sciences (PNAS).

An estimated 9 percent or 30 million adults in the United States suffer from moderate to severe non-cancer related chronic pain, according to the American Pain Society.

The messenger, cAMP, relays responses and mediates the action of many biological processes, including inflammation, and cardiac and smooth muscle contraction.

The research, done on rodents and funded by the National Institutes of Health, confirmed earlier studies at UC Davis that showed stabilization of natural epoxy-fatty acids (EFAs) through inhibition of sEH reduces pain. "However, in the absence of an underlying painful state, inhibition of sEH is ineffective," Inceoglu said.

"This permits normal pain responses that serve to protect us from tissue damage to remain intact, while alleviating debilitating pain," said co-author and pain neurobiologist Steven Jinks, associate professor of anesthesiology and pain medicine, UC Davis School of Medicine.

"Another advantage of inhibition of sEH is that it does not impair motor skills in several tests, unlike other analgesics," said graduate student researcher Karen Wagner of the Hammock lab research team.

While conducting the research, the scientists found something they weren't looking for. "To our surprise, we found that cAMP interacts with natural EFAs and regulates the analgesic or pain activity of sEH inhibitors," Inceoglu said.

"This demonstrates the power of using advance instrumental analysis techniques to better understand the molecular mechanism of biological effects," said Nils Helge Schebb, a postdoctoral researcher from the Hammock group who worked on the quantification of the oxylipins in this project. Schebb leaves UC Davis this week to accept a position as junior research group leader at the University of Veterinary Medicine, Hannover, Germany.

"This is like something old, something new, something practical and something basic, too," said Hammock, a distinguished professor of entomology who holds a joint appointment with the UC Davis Cancer Research Center.

Old? The research, Hammock said, involves "an old class of drugs known as phosphodiesterase inhibitors that likely exert part of their action by increasing the levels of natural compounds in the body called EETs (epoxyeicosatrienoic acids). Rolipram, Viagra, Theophyline, and Ibudilast are all in the phosphodiesterase-inhibitor class."

New? The Hammock lab previously reported that a new class of experimental drugs called soluble epoxide hydrolase inhibitors (sEHIs) stabilize and also increase EETs.

Practical and basic? "A practical application of this work demonstrated by Bora Inceoglu is that the combination of this old and new class of drugs are highly effective in controlling pain," said Hammock, senior author of the paper. "Of course, the basic aspects of the work include new insights in how EETs, cyclic nucleotides and the enzymes that degrade them interact to regulate a variety of biological functions."

Both the old and the new class of drugs are based on inhibiting enzymes which degrade potent natural chemical mediators.

nceoglu, Hammock, Jinks, Schebb, and Wagner co-authored the paper with veterinary anesthesiologist Robert Brosnan, associate professor of surgical and radiological sciences, School of Veterinary Medicine; and Christophe Morisseau, Arzu Ulu, Christine Hegedus and Tristan Rose, Department of Entomology and the Cancer Center.

The Jinks lab played a major role in the earlier UC Davis studies that showed a stabilization of EFAs through inhibition of sHE reduces pain. The Hammock lab works closely with the Jinks lab.

The pain discovery would not have been possible without sophisticated mass spectrometry equipment which allowed the analysis of the vanishingly small amounts of natural compounds that control pain and inflammation in the body, the researchers agreed.

Hammock described the potential practical applications of these fundamental discoveries as exciting. "We all have both suffered pain and have friends with unrelenting chronic pain problems," he said. "The possibility of combining members of an old class of drugs with our new sEHI and actually providing relief for pain is very exciting."

From his time as a graduate student, Hammock and his laboratory have focused on xenobiotic metabolism and largely on esterases and epoxide hydrolases. Current projects involve examining the role of esterases in insecticide resistance and human metabolism of pyrethroids. His laboratory is exploiting inhibitors of epoxide hydrolases as drugs to treat diabetes, inflammation, ischemia, and cardiovascular disease.

Kathy Keatley Garvey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>