Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Researchers Find Culprit Behind Skeletal Muscle Disease

29.01.2014
A University of Arizona doctoral candidate has shown for the first time that genetic mutations in the titin gene can cause skeletal muscle myopathy, a disease in which muscle fibers do not function properly, resulting in muscle weakness. Myopathic disease can affect heart muscles as well as skeletal muscles, and titin is responsible for many problems associated with heart disease.

The research was done by Danielle Buck, a doctoral candidate in the UA’s Department of Molecular and Cellular Biology. She worked under the direction of Henk Granzier, a professor in cellular and molecular medicine and physiology, who has studied titin for years.

Previous studies had shown that alterations in titin are involved in muscular myopathies, but whether these deviations actually cause myopathies, or merely result from them, has remained a mystery.

Buck has shown that mutations in the titin gene do in fact cause myopathies in skeletal muscles. Her study, published today in the Journal of General Physiology, could be an important first step in developing treatments to address causes of the disease.

“Patients with muscle myopathy experience muscle weakness, but not a lot has been known about what is going wrong at the molecular and genetic level, except that titin is often involved,” Buck said. “Many patients with heart disease also have mutations in titin. So to develop treatments we need to understand the structure of titin and how it can cause or respond to disease.”

“With about 35,000 amino acids, titin is the largest protein known, roughly 100 times larger than typical proteins, which have only around several hundred amino acids,” Granzier explained. Amino acids are the building blocks of proteins.

Titin, he said, functions as a molecular spring that makes tissues elastic so that when they deform they can snap back again. “Titin is a vital determinant of the elasticity of skeletal and heart muscles, which is very important for normal muscular function,” he noted.

“Titin is like the stretchy material in a rubber balloon,” said Buck. “If you have a balloon that is too stretchy or too stiff, then it’s not going to be able to expand or contract. Tissues also need to have elasticity so that they can restore their original shape after they have been contracted.”

Conducting genetic testing for mutations in the titin gene and studying the defects in the protein have been challenging due to titin’s “enormous size,” Granzier said. “But excellent facilities at the University of Arizona have enabled researchers to make great impact and progress has recently accelerated.”

Buck’s research “has directly shown that introducing specific changes to the titin gene can lead to disease in skeletal muscles,” Granzier said. “We know now that titin itself can trigger the disease. Danielle’s research shows that this giant protein needs to be tuned just right or it can cause myopathies to develop in skeletal muscles.”

Buck’s research “also demonstrated for the first time that changing a part of the gene results in a cascade of additional damaging changes in the protein,” he added.

“We found that in skeletal muscles, deleting one area of titin can affect expression of the entire protein and other areas can subsequently be deleted as well,” Buck said. “Shortening titin leads to a cascade of effects that cause titin to be even shorter, and that causes the muscle to become very stiff.”

Buck approached her work from many levels, Granzier said. “She worked at the gene level, the transcription level, the protein level and the functional level of cells and tissues to get an integrative understanding of the changes that this genetic modification caused.”

“We try to look at all these levels so that we can get a deeper understanding of the mechanisms that give rise to disease,” he added. “It is a multidisciplinary study, from molecular and cellular biology to integrative physiology.”

Understanding what factors cause myopathies could enable researchers to reverse the disease in humans by developing medications to counter damaging activity of the gene, Buck said.

“The next step ideally would be to use this model as an avenue to find new future therapeutic targets,” she said.

Buck already has begun to forge into research around a possible cure for myopathies.

Granzier’s lab, including John Smith and Charles Chung, collaborated with researchers at the Tokyo Metropolitan Institute of Medical Science in Japan and at the University of Heidelberg in Germany. The study was supported by National Institutes of Health grants to Granzier as well as fellowships from the Bellows Foundation and the ARCS Foundation to Buck.

This story and photos are online:
http://uanews.org/story/ua-researchers-find-culprit-behind-skeletal-muscle-disease

Research paper: http://jgp.rupress.org/content/143/2/215

Contacts

Sources
Henk Granzier
Professor, Molecular and Cellular Biology and Physiology
520-626-3641
granzier@email.arizona.edu
Danielle Buck
Doctoral candidate, Molecular and Cellular Biology
dbuck1@email.arizona.edu
UANews Contact
Shelley Littin
319-541-1482
littin@email.arizona.edu

Shelley Littin | UANews
Further information:
http://www.arizona.edu

More articles from Health and Medicine:

nachricht MSU scientists set sights on glaucoma medication to treat TB
24.07.2015 | Michigan State University

nachricht An innovative algorithm is helping scientists decipher how drugs work inside the body
24.07.2015 | Columbia University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>