Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Researchers Find Culprit Behind Skeletal Muscle Disease

29.01.2014
A University of Arizona doctoral candidate has shown for the first time that genetic mutations in the titin gene can cause skeletal muscle myopathy, a disease in which muscle fibers do not function properly, resulting in muscle weakness. Myopathic disease can affect heart muscles as well as skeletal muscles, and titin is responsible for many problems associated with heart disease.

The research was done by Danielle Buck, a doctoral candidate in the UA’s Department of Molecular and Cellular Biology. She worked under the direction of Henk Granzier, a professor in cellular and molecular medicine and physiology, who has studied titin for years.

Previous studies had shown that alterations in titin are involved in muscular myopathies, but whether these deviations actually cause myopathies, or merely result from them, has remained a mystery.

Buck has shown that mutations in the titin gene do in fact cause myopathies in skeletal muscles. Her study, published today in the Journal of General Physiology, could be an important first step in developing treatments to address causes of the disease.

“Patients with muscle myopathy experience muscle weakness, but not a lot has been known about what is going wrong at the molecular and genetic level, except that titin is often involved,” Buck said. “Many patients with heart disease also have mutations in titin. So to develop treatments we need to understand the structure of titin and how it can cause or respond to disease.”

“With about 35,000 amino acids, titin is the largest protein known, roughly 100 times larger than typical proteins, which have only around several hundred amino acids,” Granzier explained. Amino acids are the building blocks of proteins.

Titin, he said, functions as a molecular spring that makes tissues elastic so that when they deform they can snap back again. “Titin is a vital determinant of the elasticity of skeletal and heart muscles, which is very important for normal muscular function,” he noted.

“Titin is like the stretchy material in a rubber balloon,” said Buck. “If you have a balloon that is too stretchy or too stiff, then it’s not going to be able to expand or contract. Tissues also need to have elasticity so that they can restore their original shape after they have been contracted.”

Conducting genetic testing for mutations in the titin gene and studying the defects in the protein have been challenging due to titin’s “enormous size,” Granzier said. “But excellent facilities at the University of Arizona have enabled researchers to make great impact and progress has recently accelerated.”

Buck’s research “has directly shown that introducing specific changes to the titin gene can lead to disease in skeletal muscles,” Granzier said. “We know now that titin itself can trigger the disease. Danielle’s research shows that this giant protein needs to be tuned just right or it can cause myopathies to develop in skeletal muscles.”

Buck’s research “also demonstrated for the first time that changing a part of the gene results in a cascade of additional damaging changes in the protein,” he added.

“We found that in skeletal muscles, deleting one area of titin can affect expression of the entire protein and other areas can subsequently be deleted as well,” Buck said. “Shortening titin leads to a cascade of effects that cause titin to be even shorter, and that causes the muscle to become very stiff.”

Buck approached her work from many levels, Granzier said. “She worked at the gene level, the transcription level, the protein level and the functional level of cells and tissues to get an integrative understanding of the changes that this genetic modification caused.”

“We try to look at all these levels so that we can get a deeper understanding of the mechanisms that give rise to disease,” he added. “It is a multidisciplinary study, from molecular and cellular biology to integrative physiology.”

Understanding what factors cause myopathies could enable researchers to reverse the disease in humans by developing medications to counter damaging activity of the gene, Buck said.

“The next step ideally would be to use this model as an avenue to find new future therapeutic targets,” she said.

Buck already has begun to forge into research around a possible cure for myopathies.

Granzier’s lab, including John Smith and Charles Chung, collaborated with researchers at the Tokyo Metropolitan Institute of Medical Science in Japan and at the University of Heidelberg in Germany. The study was supported by National Institutes of Health grants to Granzier as well as fellowships from the Bellows Foundation and the ARCS Foundation to Buck.

This story and photos are online:
http://uanews.org/story/ua-researchers-find-culprit-behind-skeletal-muscle-disease

Research paper: http://jgp.rupress.org/content/143/2/215

Contacts

Sources
Henk Granzier
Professor, Molecular and Cellular Biology and Physiology
520-626-3641
granzier@email.arizona.edu
Danielle Buck
Doctoral candidate, Molecular and Cellular Biology
dbuck1@email.arizona.edu
UANews Contact
Shelley Littin
319-541-1482
littin@email.arizona.edu

Shelley Littin | UANews
Further information:
http://www.arizona.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>