Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers find natural antioxidant can protect against cardiovascular disease

18.06.2012
University of Minnesota Medical School researchers have collaborated with the School of Public Health and discovered an enzyme that, when found at high levels and alongside low levels of HDL (good cholesterol), can dramatically reduce the risk of cardiovascular disease.

The enzyme – glutathione peroxidase, or GPx3 – is a natural antioxidant that helps protect organisms from oxidant injury and helps the body naturally repair itself. Researchers have found that patients with high levels of good cholesterol, the GPx3 enzyme does not make a significant difference.

However, those patients with low levels of good cholesterol, the GPx3 enzyme could potentially be a big benefit. The enzyme's link to cardiovascular disease may also help determine cardiovascular risk in patients with low levels of good cholesterol and low levels of the protective GPx3.

The new research, published today by PLoS One, supports the view that natural antioxidants may offer the human body profound benefits.

"In our study, we found that people with high levels of the GPx3 enzyme and low levels of good cholesterol were six times less likely to develop cardiovascular disease than people with low levels of both," said lead author Jordan L. Holtzman, M.D., Ph.D., professor of pharmacology and medicine within the University of Minnesota Medical School. "This GPx3 enzyme gives us a good reason to believe that natural antioxidants like GPx3 are good for heart health."

The combination of low HDL and low GPx3 affects an estimated 50 million people – one in four adults – in the U.S. This condition can lead to fatal heart attacks and strokes. Researchers continue to look for new ways to better predict who is at risk for these diseases and how patients can limit the impact of the disease once it's diagnosed.

"It's important to point out that people should not rush out to their doctors and demand testing for the GPx3 enzyme," said Holtzman. "But in time, we hope that measuring this enzyme will be a common blood test when determining whether a patient is at risk for cardiovascular disease, including heart attacks and strokes."

To arrive at his results, Holtzman and his colleagues studied the three major risk factors for cardiovascular disease: hypertension, smoking and high cholesterol. Data suggests that those with low levels of HDL and GPx3 were six times more likely to die from cardiovascular disease, including heart attack or stroke, than those with low levels of HDL and high levels of GPx3.

The study examined 130 stored samples from the Minnesota Heart Survey from participants who died of cardiovascular disease after 5-12 years of follow-up care. The ages of patients studied ranged from 26-85 years old. Their data was compared to 240 control samples.

"This is an important enzyme for people with low HDL cholesterol," said Holtzman. "We think further research will be important in determining the future role of GPx3 and what drugs may serve to increase its activity in the blood."

The research reported in this publication was supported by the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (RO1-HL23727), the Mayo Chair Endowment, School of Public Health, University of Minnesota (DJ), and grant no. 2005R013 from the Netherlands Heart Foundation, Den Haag, the Netherlands (BB).

About the Medical School:

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit www.med.umn.edu to learn more.

Matt DePoint | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>