Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers find novel gene correction model for epidermolysis bullosa

07.06.2013
A research team led by pediatric blood and marrow transplantation experts Mark Osborn, Ph.D. and Jakub Tolar, M.D., Ph.D. from the Masonic Cancer Center, University of Minnesota, have discovered a remarkable new way to repair genetic defects in the skin cells of patients with the skin disease epidermolysis bullosa.

The findings, published today in the journal Molecular Therapy and highlighted in the most recent issue of Nature, represent the first time researchers been able to correct a disease-causing gene in its natural location in the human genome using engineered transcription activator-like effector nucleases.

Epidermolysis bullosa (EB) is a skin disease caused by genetic mutations. Patients suffering from EB – primarily children - lack the proteins that hold the epidermis and dermis together, which leads to painful blistering and sores. The condition is often deadly. The University of Minnesota is an international leader in the treatment of EB and the research that has led to new treatment approaches.

In their latest work, Osborn and Tolar's team collaborated with genomic engineer Daniel Voytas, Ph.D., of the University of Minnesota's College of Biological Sciences, to engineer transcription activator-like effector nucleases (TALENs) that target the mutation and correct the error in the skin cells of patients with the disease. Researchers then reprogrammed these cells to make pluripotent stem cells that can create many different kinds of tissues. These amended cells were then able to produce the missing protein when placed in living skin models.

"These results provide proof of principle for TALEN-based precision gene correction, and it could open the door for more individualized therapeutics," said Osborn, an assistant professor in the University of Minnesota Medical School's Department of Pediatrics Division of Blood and Marrow Transplantation.

By using an unbiased screening method, researchers were able to take a comprehensive approach to TALEN-mapping. This strategy helped identify three other possible locations for future research and potential therapies.

"This is the first time we've been able to seamlessly correct a disease-causing gene in its natural location in the human genome using the TALEN-based approach. This opened up options we did not have before when considering future therapies," said Tolar, director of the University's Stem Cell Institute and an associate professor in the Department of Pediatrics Division of Blood and Marrow Transplantation.

The University of Minnesota Pediatric Blood and Marrow Transplant team, led by John Wagner, M.D. and Bruce Blazar, M.D., has pioneered bone marrow transplantation as the standard of care for severe EB. Tolar and Osborn hope that the individualized "genome editing" of patient cells will provide the next generation of therapies for EB and other genetic diseases.

Funding for this research was supported by grants from the Epidermolysis Bullosa Research Fund, the Jackson Gabriel Silver Foundation, DebRA International, the University of Minnesota Academic Health Center, Pioneering Unique Cures for Kids Foundation, Children's Cancer Research Fund, and the United States of America Department of Defense. The National Institutes of Health supports several authors through grant R01 GM098861 and the Director's Pioneer Award DP1 OD006862.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit http://www.cancer.umn.edu or call 612-624-2620.

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit http://www.med.umn.edu to learn more.

Caroline Marin | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>