Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of M researchers find novel gene correction model for epidermolysis bullosa

A research team led by pediatric blood and marrow transplantation experts Mark Osborn, Ph.D. and Jakub Tolar, M.D., Ph.D. from the Masonic Cancer Center, University of Minnesota, have discovered a remarkable new way to repair genetic defects in the skin cells of patients with the skin disease epidermolysis bullosa.

The findings, published today in the journal Molecular Therapy and highlighted in the most recent issue of Nature, represent the first time researchers been able to correct a disease-causing gene in its natural location in the human genome using engineered transcription activator-like effector nucleases.

Epidermolysis bullosa (EB) is a skin disease caused by genetic mutations. Patients suffering from EB – primarily children - lack the proteins that hold the epidermis and dermis together, which leads to painful blistering and sores. The condition is often deadly. The University of Minnesota is an international leader in the treatment of EB and the research that has led to new treatment approaches.

In their latest work, Osborn and Tolar's team collaborated with genomic engineer Daniel Voytas, Ph.D., of the University of Minnesota's College of Biological Sciences, to engineer transcription activator-like effector nucleases (TALENs) that target the mutation and correct the error in the skin cells of patients with the disease. Researchers then reprogrammed these cells to make pluripotent stem cells that can create many different kinds of tissues. These amended cells were then able to produce the missing protein when placed in living skin models.

"These results provide proof of principle for TALEN-based precision gene correction, and it could open the door for more individualized therapeutics," said Osborn, an assistant professor in the University of Minnesota Medical School's Department of Pediatrics Division of Blood and Marrow Transplantation.

By using an unbiased screening method, researchers were able to take a comprehensive approach to TALEN-mapping. This strategy helped identify three other possible locations for future research and potential therapies.

"This is the first time we've been able to seamlessly correct a disease-causing gene in its natural location in the human genome using the TALEN-based approach. This opened up options we did not have before when considering future therapies," said Tolar, director of the University's Stem Cell Institute and an associate professor in the Department of Pediatrics Division of Blood and Marrow Transplantation.

The University of Minnesota Pediatric Blood and Marrow Transplant team, led by John Wagner, M.D. and Bruce Blazar, M.D., has pioneered bone marrow transplantation as the standard of care for severe EB. Tolar and Osborn hope that the individualized "genome editing" of patient cells will provide the next generation of therapies for EB and other genetic diseases.

Funding for this research was supported by grants from the Epidermolysis Bullosa Research Fund, the Jackson Gabriel Silver Foundation, DebRA International, the University of Minnesota Academic Health Center, Pioneering Unique Cures for Kids Foundation, Children's Cancer Research Fund, and the United States of America Department of Defense. The National Institutes of Health supports several authors through grant R01 GM098861 and the Director's Pioneer Award DP1 OD006862.

Masonic Cancer Center, University of Minnesota is part of the University's Academic Health Center. It is designated by the National Cancer Institute as a Comprehensive Cancer Center. For more information about the Masonic Cancer Center, visit or call 612-624-2620.

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit to learn more.

Caroline Marin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>