Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers may have discovered key to help women fight infections during pregnancy

22.07.2011
By manipulating an immune suppressive cell type, U researchers believe women will be able to more efficiently fight off prenatal infections

A normal but concerning consequence of pregnancy is the fact that pregnant women are more susceptible to infection. University of Minnesota Medical School researchers have identified the underlying mechanisms for this physiologic immune suppression that may lead to new therapies to help ward off infections during pregnancy.

In pregnancy, immune system suppressing cells (called regulatory T cells) increase in number to protect the baby from attack by the mother's immune system. Because these cells are busy protecting the developing baby, pregnant women aren't able to curb off infections caused by common but potentially serious disease-causing bacteria, such as Listeria and Salmonella.

Using a mouse pregnancy model, Dr. Sing Sing Way, an Assistant Professor in the Departments of Pediatrics and Microbiology, and his colleagues from the Center for Infectious Disease and Microbiology Translational Research have developed a method to dissociate the beneficial and detrimental impacts of maternal regulatory T cells.

Specifically, when the immune suppressive molecule IL-10 is removed from regulatory T cells, mice were able to more efficiently combat infection against prenatal pathogens. Importantly, removing the IL-10 molecule did not have any negative impact on the outcome of the pregnancy.

The findings are published in the July issue of Cell Host & Microbe.

"This research has identified that the immune cells critically required for sustaining pregnancy also causes pregnant women to be more susceptible to infection," Way said. "Our findings also uncover a potential immune-based therapy that can broadly boost resistance against infections during pregnancy without compromising pregnancy outcome."

Pregnant women don't always know when they have an infection, and sometimes the common signs and symptoms are masked during pregnancy, Way said. Delayed treatment can not only harm the health of the mother, but also cause infection in the developing fetus.

The study was funded by the National Institutes of Health. Collaborators include Jared Rowe and James Ertelt of the Department of Pediatrics and Microbiology, Dr. Marijo Aguilera of the Department of Obstetrics, Gynecology and Women's Health, and Dr. Michael Farrar of Department of Laboratory Medicine and Pathology

Nick Hanson | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: IL-10 T cells health services immune cell immune system microbiology pregnant women

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>