Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers discover therapeutic target that could help patients with pulmonary fibrosis

25.08.2009
Research published in Nature Medicine shows successful genetic and pharmacologic treatment in mice that could impact other fibrotic diseases

A diagnosis of Idiopathic Pulmonary Fibrosis is not much better than a death sentence: there is no treatment and the survival rate is less than three years.

But researchers at the University of Michigan have discovered that targeting of a novel gene utilizing genetic and pharmacologic strategies was successful in treating pulmonary fibrosis in mice and will be developed for future testing in humans.

The treatments attack an oxidant-generating enzyme, NOX4, that researchers discovered is involved in the fibrotic process — which involves scar-like tissue formation in an organ such as the lung. The researchers' findings will be published in the September issue of the journal Nature Medicine.

"We've identified the target. We know the enemy now," said Subramaniam Pennathur, M.D., assistant professor of internal medicine/nephrology. "This is the first study that shows pulmonary fibrosis is driven by this NOX4 enzyme.

"But what's really significant is this discovery may have relevance to fibrosis in other organ systems, not just the lung."

So those suffering from common cardiac or kidney diseases, which often involve fibrosis, also may benefit from treatments stemming from this research, Pennathur said.

Pennathur said continued support from the National Institutes of Health will eventually allow researchers to take the treatment to human studies. The University of Michigan also has filed for patent protection and is currently looking for a licensing partner to help bring the technology to market.

The discovery was made in the University of Michigan lab of Victor J. Thannickal, M.D. He was assisted by Louise Hecker, Ph.D., a post-doctoral research fellow.

Thannickal said the study points to a very viable treatment strategy for idiopathic pulmonary fibrosis, and researchers saw success both in mouse models of lung fibrosis and in fibrogenic cells isolated from lungs of patients with Idiopathic Pulmonary Fibrosis.

"It remains to be seen if fibrosis is reversible," he said. "But therapeutic targeting of this pathway this may allow us to halt the progression of fibrosis and preserve lung function."

The lung disease often affects older people, Thannickal said, and its cause is generally unknown. It is possible that cumulative injuries like exposure to environmental toxins and pollutants in genetically susceptible individuals could contribute to causing fibrosis.

There is a gradual scarring of the lung, thickening and contracting the organ until it loses its ability to exchange oxygen with blood, Hecker said. Patients experience extreme fatigue, rapid weight loss, chronic cough and shortness of breath.

There are five million people worldwide that are affected by this disease, according to the Pulmonary Fibrosis Foundation. In the United States there are over 100,000 patients with Pulmonary Fibrosis.

When U-M researchers induced the fibrotic process in the mice, they discovered that the NOX4 enzyme was elevated. By knocking down that enzyme at the genetic level or inhibiting its activity, the fibrosis was stopped, Hecker said.

"So we may be able to halt lung scarring even after the injury has occurred and fibrosis is set in motion," she said. "This research provides proof of concept that we can target this pathway for therapeutic benefit, which could potentially be used in humans."

Both Hecker and Thannickal left U-M this summer for the University of Alabama at Birmingham, but they plan to continue to work with Pennathur and other U-M researchers on anti-fibrotic therapies based on these studies. The patent will stay with U-M.

Written by Mary F. Masson

Mary Masson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>