Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers discover therapeutic target that could help patients with pulmonary fibrosis

25.08.2009
Research published in Nature Medicine shows successful genetic and pharmacologic treatment in mice that could impact other fibrotic diseases

A diagnosis of Idiopathic Pulmonary Fibrosis is not much better than a death sentence: there is no treatment and the survival rate is less than three years.

But researchers at the University of Michigan have discovered that targeting of a novel gene utilizing genetic and pharmacologic strategies was successful in treating pulmonary fibrosis in mice and will be developed for future testing in humans.

The treatments attack an oxidant-generating enzyme, NOX4, that researchers discovered is involved in the fibrotic process — which involves scar-like tissue formation in an organ such as the lung. The researchers' findings will be published in the September issue of the journal Nature Medicine.

"We've identified the target. We know the enemy now," said Subramaniam Pennathur, M.D., assistant professor of internal medicine/nephrology. "This is the first study that shows pulmonary fibrosis is driven by this NOX4 enzyme.

"But what's really significant is this discovery may have relevance to fibrosis in other organ systems, not just the lung."

So those suffering from common cardiac or kidney diseases, which often involve fibrosis, also may benefit from treatments stemming from this research, Pennathur said.

Pennathur said continued support from the National Institutes of Health will eventually allow researchers to take the treatment to human studies. The University of Michigan also has filed for patent protection and is currently looking for a licensing partner to help bring the technology to market.

The discovery was made in the University of Michigan lab of Victor J. Thannickal, M.D. He was assisted by Louise Hecker, Ph.D., a post-doctoral research fellow.

Thannickal said the study points to a very viable treatment strategy for idiopathic pulmonary fibrosis, and researchers saw success both in mouse models of lung fibrosis and in fibrogenic cells isolated from lungs of patients with Idiopathic Pulmonary Fibrosis.

"It remains to be seen if fibrosis is reversible," he said. "But therapeutic targeting of this pathway this may allow us to halt the progression of fibrosis and preserve lung function."

The lung disease often affects older people, Thannickal said, and its cause is generally unknown. It is possible that cumulative injuries like exposure to environmental toxins and pollutants in genetically susceptible individuals could contribute to causing fibrosis.

There is a gradual scarring of the lung, thickening and contracting the organ until it loses its ability to exchange oxygen with blood, Hecker said. Patients experience extreme fatigue, rapid weight loss, chronic cough and shortness of breath.

There are five million people worldwide that are affected by this disease, according to the Pulmonary Fibrosis Foundation. In the United States there are over 100,000 patients with Pulmonary Fibrosis.

When U-M researchers induced the fibrotic process in the mice, they discovered that the NOX4 enzyme was elevated. By knocking down that enzyme at the genetic level or inhibiting its activity, the fibrosis was stopped, Hecker said.

"So we may be able to halt lung scarring even after the injury has occurred and fibrosis is set in motion," she said. "This research provides proof of concept that we can target this pathway for therapeutic benefit, which could potentially be used in humans."

Both Hecker and Thannickal left U-M this summer for the University of Alabama at Birmingham, but they plan to continue to work with Pennathur and other U-M researchers on anti-fibrotic therapies based on these studies. The patent will stay with U-M.

Written by Mary F. Masson

Mary Masson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>