Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers develop a molecular 'calcium sponge' to tackle heart failure

11.02.2013
Researchers at the University of Minnesota's Department of Integrative Biology and Physiology and the Lillehei Heart Institute have utilized molecular genetic engineering to optimize heart performance in models of diastolic heart failure by creating an optimized protein that can aid in high-speed relaxation similar to fast twitching muscles.

Within heart cells, calcium plays a major role in orchestrating normal heart pump function. However, in diastolic failure the calcium signaling process is slowed; calcium levels rise to the peak needed for the squeezing action of the heart but don't then drop quickly enough for an efficient relaxation period – the condition known as diastolic heart failure.

University researchers were able to pinpoint a specific protein, parvalbumin – which aids in high-speed relaxation of fast twitching muscles in nature – and optimize it to become a calcium sponge for heart muscle. As a result, the optimized protein, ParvE101Q, soaks up excess calcium at a precise instant, allowing the heart to relax efficiently after contraction.

The advance offers a solid conceptual step forward in solving the puzzle of diastolic heart failure. The next step will be determining the best possible small molecule or gene delivery mechanism for the protein, which should allow the discovery to be used in clinics.

Their approach is outlined in the latest issue of Nature Medicine.

"In nature, there are unique organisms known to be able to contract and relax muscles quickly," said Joseph M. Metzger, Ph.D., a University of Minnesota Medical School professor and chair of the Department of Integrative Biology and Physiology. "We hoped research and discovery could help identify what was promoting this highly efficient activity so we could harness it for use in the heart. We've discovered that our optimized variation of parvalbumin can fulfill that role by treating diastolic heart failure."

According to Metzger, who also serves as the Maurice B. Visscher Endowed Chair in Physiology, the sponge mechanism works as a temporary depot for calcium along its normal pathway. It increases productivity in the relaxation phase of the heart cycle without negatively impacting the contracting phase.

If they can develop an ideal delivery system for the optimized protein, the researchers believe they may have found a unique clinical application to treat diastolic heart failure. Heart failure is a common killer of both men and women across the country and the rate of heart failure is increasing as our population ages and as the survival rate after recovery from first heart attack goes up.

"Heart disease and heart failure rates are growing, especially as our population ages. We hope this type of discovery may one day help pave the way to a better way to treat patients," said Metzger.

Collaborating with University of Minnesota investigators were researchers from the University of Miami (FL) Leonard M. Miller School of Medicine and The Ohio State University College of Medicine.

Funding for this project was provided in part by the National Institutes of Health via grants HL115876, HL59301, HL71016. Researchers also received support from the American Heart Association, the Lillehei Heart Institute, the University of Minnesota Medical School and the Visscher Endowed Chair.

Caroline Marin | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>