Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers develop a molecular 'calcium sponge' to tackle heart failure

11.02.2013
Researchers at the University of Minnesota's Department of Integrative Biology and Physiology and the Lillehei Heart Institute have utilized molecular genetic engineering to optimize heart performance in models of diastolic heart failure by creating an optimized protein that can aid in high-speed relaxation similar to fast twitching muscles.

Within heart cells, calcium plays a major role in orchestrating normal heart pump function. However, in diastolic failure the calcium signaling process is slowed; calcium levels rise to the peak needed for the squeezing action of the heart but don't then drop quickly enough for an efficient relaxation period – the condition known as diastolic heart failure.

University researchers were able to pinpoint a specific protein, parvalbumin – which aids in high-speed relaxation of fast twitching muscles in nature – and optimize it to become a calcium sponge for heart muscle. As a result, the optimized protein, ParvE101Q, soaks up excess calcium at a precise instant, allowing the heart to relax efficiently after contraction.

The advance offers a solid conceptual step forward in solving the puzzle of diastolic heart failure. The next step will be determining the best possible small molecule or gene delivery mechanism for the protein, which should allow the discovery to be used in clinics.

Their approach is outlined in the latest issue of Nature Medicine.

"In nature, there are unique organisms known to be able to contract and relax muscles quickly," said Joseph M. Metzger, Ph.D., a University of Minnesota Medical School professor and chair of the Department of Integrative Biology and Physiology. "We hoped research and discovery could help identify what was promoting this highly efficient activity so we could harness it for use in the heart. We've discovered that our optimized variation of parvalbumin can fulfill that role by treating diastolic heart failure."

According to Metzger, who also serves as the Maurice B. Visscher Endowed Chair in Physiology, the sponge mechanism works as a temporary depot for calcium along its normal pathway. It increases productivity in the relaxation phase of the heart cycle without negatively impacting the contracting phase.

If they can develop an ideal delivery system for the optimized protein, the researchers believe they may have found a unique clinical application to treat diastolic heart failure. Heart failure is a common killer of both men and women across the country and the rate of heart failure is increasing as our population ages and as the survival rate after recovery from first heart attack goes up.

"Heart disease and heart failure rates are growing, especially as our population ages. We hope this type of discovery may one day help pave the way to a better way to treat patients," said Metzger.

Collaborating with University of Minnesota investigators were researchers from the University of Miami (FL) Leonard M. Miller School of Medicine and The Ohio State University College of Medicine.

Funding for this project was provided in part by the National Institutes of Health via grants HL115876, HL59301, HL71016. Researchers also received support from the American Heart Association, the Lillehei Heart Institute, the University of Minnesota Medical School and the Visscher Endowed Chair.

Caroline Marin | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>