Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of A medical researchers discover 'very promising' treatment for Huntington disease

14.02.2012
New potential therapy that restores motor function being planned for clinical trial

Medical researchers at the University of Alberta have discovered a promising new therapy for Huntington disease that restores lost motor skills and may delay or stop the progression of the disease based on lab model tests, says the lead researcher. Because the new therapy uses a molecule already being used in clinical trials for other diseases, it could be used in a clinical trial for Huntington disease within the next one to two years.

"We didn't expect to see such dramatic changes after administering this therapy," said Simonetta Sipione, the Principal Investigator "We expected to see improvement, but not complete restoration of motor skills. When we saw this, we were jumping with excitement in the lab. This is very promising and should give hope to those with Huntington disease. I think it's a treatment that deserves to go to clinical trials because it could have huge potential."

Those with this inherited brain disorder, where a mutant protein triggers brain cell death causing loss of motor and cognitive skills and eventually death, have slightly lower levels of a brain molecule known as GM1. When U of A medical researchers restored GM1 to normal levels in lab models with the disease, motor skills in the lab models returned to normal within days, said Sipione, a researcher in the Department of Pharmacology and the Centre for Neuroscience, both within the Faculty of Medicine & Dentistry.

Her team's research was published in the peer-reviewed journal Proceedings of the National Academy of Sciences today.

The molecule used in the lab tests at the U of A was produced both naturally and synthetically through chemical production. This same molecule has been used in clinical trials for the treatment of Parkinson's and other neurodegenerative diseases, so using this molecule to treat patients with Huntington disease in a small first stage clinical trial could happen relatively quickly. Details are still being worked out about where the trial would take place, but researchers are hoping it will be at the U of A and are in discussions with a University of Alberta Hospital neurologist.

During the research stage, lab models at the U of A were given the GM1 molecule therapy for four weeks. During the first two weeks after the treatment finished, the lab models still had normal motor function. But after that, motor function started to decline and return to pre-treatment levels by the end of the fourth week. So a potential treatment with this molecule would involve repeated treatments over the long-term, says Sipione.

Sipione and her team are continuing their research to see if restored levels of the GM1 molecule can also reverse cognitive damage in lab models with Huntington disease. They hope to publish the results from these tests within one year. It seems the GM1 therapy improves the way neurons work and makes the mutant huntingtin protein less toxic.

"Because of the way it works, we think it will work on cognitive symptoms of the disease too," says Sipione, a Canada Research Chair Tier 2 in Neurobiology of Huntington disease and an Alberta Innovates-Health Solutions Scholar.

The Huntington Society of Canada funded the research and the CEO said she is excited about the promising results.

"The Huntington Society of Canada is proud to support the excellent research of Dr. Sipione," said Bev Heim-Myers, CEO, Huntington Society of Canada. "Dr. Sipione, for the first time, has demonstrated that in a Huntington disease laboratory model, the treatment reverts the lab model back to normal, not just slightly better.

"It is important to understand that some treatments may work in laboratory models, but not in people. The applicability of the treatment discovered by Dr. Sipione to Huntington disease patients will be determined in clinical trials. We are optimistic that this research demonstrates real potential for a Huntington disease therapy."

Raquel Maurier | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>