Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of vaccines deliver stronger and faster immune response

25.11.2008
- could be used to protect against previously untreatable, deadly viruses and cancers

A new vaccine principle is being developed by scientists at the University of Copenhagen which – if it works to its full expected potential – could help to save millions of lives and revolutionise current vaccine technology.

The ‘InVacc’ platform, as it is known, represents an advance on the original DNA vaccines and generates new vaccines with greatly enhanced properties. The platform consists of a chain of amino acids attached to a gene of the virus being vaccinated against.

This genetic cocktail is then inserted into an incapacitated flu-like virus such as the adenovirus and injected into the body, where it triggers a broader and more aggressive immune response, enabling the immune system to quickly seek out and destroy the disease when it invades.

“We are excited to be working on the vaccine technology”, says Associate Professor Jan Pravsgaard, the lead scientist behind the project. “The platform has proved very effective in our recent tests and could have enormous potential. In principle, vaccines of this type could be used to inoculate against a range of deadly viruses, bacteria and other disease-causing agents and even be used to cure certain cancers once they take hold.”

Tests of the vaccine platform on mice so far look extremely promising with the scientists able to provide 100% protection against different, lethal strains of flu given to the test animals.

The scientists also believe that the new technology will be effective despite the ability of different viruses and bacteria to constantly mutate and develop resistance.

Key benefits of the new technology:

-The new platform delivers a broad and very powerful immune response, enabling the immune system to defeat invading pathogens.

-Unlike many vaccines, InVacc activates the CD4+ T cells of the immune system, which govern and coordinate the other immune system attack cells. For reasons not yet fully understood, activating the CD4+ cells enhances the response of the associated attack cells (producing large numbers of CD8+ cells) and is an important rea-son why the platform is able to deliver such a strong immune response.

-InVacc provides rapid protection. In animal tests, complete pro-tection was achieved in less than 3 days after a single vaccination. This could have significant implications for the handling of epidemics, quickly halting infection rates and preventing major outbreaks.

The Scandinavian company Novo A/S and the Novo Nordisk Foundation have such faith in the new technology that they have already invested funds to create a strategic plan for development and use of the platform. “The grants awarded through our Novo Seeds programme are only for very select projects that show outstanding promise, both scientifically and commercially, explains Novo Seeds Investment Director, Stephen Christgau.” “The InVacc platform is definitely one of those. Our grants will help the team to develop and commercialise their groundbreaking research and validate the advantages of the vaccine platform against competing technologies”.

Peter Holst, PhD, from the research team, (together with the Technical Transfer Unit at the University of Copenhagen), are currently also seeking backing from international funds to take the project to its next phase of development and ultimately into clinical trials.

Sandra Szivos | alfa
Further information:
http://www.ku.dk/english/news/
http://healthsciences.ku.dk/newslist/invacc

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>