Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of vaccines deliver stronger and faster immune response

25.11.2008
- could be used to protect against previously untreatable, deadly viruses and cancers

A new vaccine principle is being developed by scientists at the University of Copenhagen which – if it works to its full expected potential – could help to save millions of lives and revolutionise current vaccine technology.

The ‘InVacc’ platform, as it is known, represents an advance on the original DNA vaccines and generates new vaccines with greatly enhanced properties. The platform consists of a chain of amino acids attached to a gene of the virus being vaccinated against.

This genetic cocktail is then inserted into an incapacitated flu-like virus such as the adenovirus and injected into the body, where it triggers a broader and more aggressive immune response, enabling the immune system to quickly seek out and destroy the disease when it invades.

“We are excited to be working on the vaccine technology”, says Associate Professor Jan Pravsgaard, the lead scientist behind the project. “The platform has proved very effective in our recent tests and could have enormous potential. In principle, vaccines of this type could be used to inoculate against a range of deadly viruses, bacteria and other disease-causing agents and even be used to cure certain cancers once they take hold.”

Tests of the vaccine platform on mice so far look extremely promising with the scientists able to provide 100% protection against different, lethal strains of flu given to the test animals.

The scientists also believe that the new technology will be effective despite the ability of different viruses and bacteria to constantly mutate and develop resistance.

Key benefits of the new technology:

-The new platform delivers a broad and very powerful immune response, enabling the immune system to defeat invading pathogens.

-Unlike many vaccines, InVacc activates the CD4+ T cells of the immune system, which govern and coordinate the other immune system attack cells. For reasons not yet fully understood, activating the CD4+ cells enhances the response of the associated attack cells (producing large numbers of CD8+ cells) and is an important rea-son why the platform is able to deliver such a strong immune response.

-InVacc provides rapid protection. In animal tests, complete pro-tection was achieved in less than 3 days after a single vaccination. This could have significant implications for the handling of epidemics, quickly halting infection rates and preventing major outbreaks.

The Scandinavian company Novo A/S and the Novo Nordisk Foundation have such faith in the new technology that they have already invested funds to create a strategic plan for development and use of the platform. “The grants awarded through our Novo Seeds programme are only for very select projects that show outstanding promise, both scientifically and commercially, explains Novo Seeds Investment Director, Stephen Christgau.” “The InVacc platform is definitely one of those. Our grants will help the team to develop and commercialise their groundbreaking research and validate the advantages of the vaccine platform against competing technologies”.

Peter Holst, PhD, from the research team, (together with the Technical Transfer Unit at the University of Copenhagen), are currently also seeking backing from international funds to take the project to its next phase of development and ultimately into clinical trials.

Sandra Szivos | alfa
Further information:
http://www.ku.dk/english/news/
http://healthsciences.ku.dk/newslist/invacc

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>