Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of sirolimus-eluting stent demonstrates superior results

23.09.2009
A new type of sirolimus-eluting stent (SES) successfully showed significantly greater neointimal suppression than the paclitaxel-eluting stent (PES) with greater vessel wall integrity surrounding the stent, confirming the finding of superiority of the SES over the PES stent for the trial's primary endpoint of in-stent late loss.

Results from the RES-ELUTION I Trial on the safety and effectiveness of a new sirolimus-eluting stent in the treatment of coronary artery disease (a single atherosclerotic lesion) in native coronary arteries will be presented at the 21st annual Transcatheter Cardiovascular Therapeutics (TCT) scientific symposium, sponsored by the Cardiovascular Research Foundation (CRF).

RES-ELUTION I, which began in March 2008, is a multi-center, randomized, single-blind controlled trial comparing the sirolimus-eluting reservoir-based stent (SES) with a paclitaxel–eluting stent (PES) system in de novo native coronary artery lesions. A total of 394 subjects were randomized to treatment with either the sirolimus-eluting or paclitaxel-eluting stents. Principal investigators of the trial included Alexandre Abizaid, MD, John Ormiston, MD and Christian Spaulding, MD.

Clinical results will be presented by John A. Spertus, MD on Thursday, September 24 at 2:45 p.m. during the Featured Clinical Trials: First Report Investigations session in Room 131. In addition to the oral presentation, a detailed intravascular ultrasound (IVUS) analysis will be on display as a poster abstract (TCT-360) on Tuesday, September 22 between 8:00 a.m. and 10:00 a.m. in Hall D of The Moscone Center. The poster will be presented by Hiromasa Otake, MD of Stanford University (Stanford, Calif.) on behalf of the RES-ELUTION I investigators.

This new sirolimus-eluting stent (SES) utilizes a reservoir technology that incorporates a number of small wells, each acting as a depot into which drug-polymer compositions are loaded. The stent's design achieves both a significant reduction in total polymer load as well as a reduction in tissue-polymer contact by more than 75% compared to conventional DES in which the entire stent surface is coated with polymer. Its use of a bioresorbable polymer is another theoretical advantage from the safety perspective, allowing the drug-eluting stent to become simple bare metal within the vessel wall approximately 3 months after deployment.

In this clinical trial, detailed arterial responses to the new DES technology were also investigated in vivo using intravascular ultrasound (IVUS). With IVUS, a tiny catheter is inserted into a coronary vessel where high-frequency sound waves reflect off tissue or vessel walls. The reflected waves create a cross-sectional image from within the vessel to aid in visualizing its structure, thereby providing both quantitative and qualitative information on vessel reaction after stenting.

Serial IVUS (immediately post-stenting and 6-month follow-up) was performed in a pre-defined IVUS subset of 100 patients (52 SES in 50 patients; 52 PES in 50 patients). Volumetric IVUS analysis demonstrated significantly less neointimal proliferation in the sirolimus-eluting stent (% neointimal volume: 5.5±11.0 vs. 11.5±9.7, p=0.016), resulting in less late lumen area loss and smaller maximum cross-sectional narrowing (neointimal area/stent area) than PES. In addition, serial IVUS analysis revealed significantly less outward vessel remodeling in the SES than in PES. The incidence of late-acquired incomplete stent apposition (ISA) was similar between the SES and PES. However, SES was associated with less outward vessel remodeling at the ISA segment, possibly suggesting different underlying mechanisms of this phenomenon.

"Our study is the first report investigating the detailed arterial responses to this new DES technology, with a randomized, blinded comparison of sirolimus-eluting stents with paclitaxel-eluting stents in human de novo native coronary lesions," said Dr. Otake.

"The combination of a different formulation strategy with different types of drug appeared to impact arterial response after DES therapy," Dr. Otake added. "Our study confirmed that the advanced formulation strategy of this new DES can perform with efficacy exceeding a first-generation DES with the potential for improved long-term safety because it turns into a bare metal stent within 3 months. This stent may be a promising DES option to treat the patients with coronary artery disease while embracing the long-term safety of bare metal stents."

About CRF and TCT

The Cardiovascular Research Foundation (CRF) is an independent, academically focused nonprofit organization dedicated to improving the survival and quality of life for people with cardiovascular disease through research and education. Since its inception in 1991, CRF has played a major role in realizing dramatic improvements in the lives of countless numbers of patients by establishing the safe use of new technologies and therapies in the subspecialty of interventional cardiology and endovascular medicine.

Transcatheter Cardiovascular Therapeutics (TCT) is the annual scientific symposium of the Cardiovascular Research Foundation. TCT gathers leading medical researchers and clinicians from around the world to present and discuss the latest developments in the field of interventional cardiology and vascular medicine.

Judy Romero | EurekAlert!
Further information:
http://www.crf.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>