Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of sirolimus-eluting stent demonstrates superior results

23.09.2009
A new type of sirolimus-eluting stent (SES) successfully showed significantly greater neointimal suppression than the paclitaxel-eluting stent (PES) with greater vessel wall integrity surrounding the stent, confirming the finding of superiority of the SES over the PES stent for the trial's primary endpoint of in-stent late loss.

Results from the RES-ELUTION I Trial on the safety and effectiveness of a new sirolimus-eluting stent in the treatment of coronary artery disease (a single atherosclerotic lesion) in native coronary arteries will be presented at the 21st annual Transcatheter Cardiovascular Therapeutics (TCT) scientific symposium, sponsored by the Cardiovascular Research Foundation (CRF).

RES-ELUTION I, which began in March 2008, is a multi-center, randomized, single-blind controlled trial comparing the sirolimus-eluting reservoir-based stent (SES) with a paclitaxel–eluting stent (PES) system in de novo native coronary artery lesions. A total of 394 subjects were randomized to treatment with either the sirolimus-eluting or paclitaxel-eluting stents. Principal investigators of the trial included Alexandre Abizaid, MD, John Ormiston, MD and Christian Spaulding, MD.

Clinical results will be presented by John A. Spertus, MD on Thursday, September 24 at 2:45 p.m. during the Featured Clinical Trials: First Report Investigations session in Room 131. In addition to the oral presentation, a detailed intravascular ultrasound (IVUS) analysis will be on display as a poster abstract (TCT-360) on Tuesday, September 22 between 8:00 a.m. and 10:00 a.m. in Hall D of The Moscone Center. The poster will be presented by Hiromasa Otake, MD of Stanford University (Stanford, Calif.) on behalf of the RES-ELUTION I investigators.

This new sirolimus-eluting stent (SES) utilizes a reservoir technology that incorporates a number of small wells, each acting as a depot into which drug-polymer compositions are loaded. The stent's design achieves both a significant reduction in total polymer load as well as a reduction in tissue-polymer contact by more than 75% compared to conventional DES in which the entire stent surface is coated with polymer. Its use of a bioresorbable polymer is another theoretical advantage from the safety perspective, allowing the drug-eluting stent to become simple bare metal within the vessel wall approximately 3 months after deployment.

In this clinical trial, detailed arterial responses to the new DES technology were also investigated in vivo using intravascular ultrasound (IVUS). With IVUS, a tiny catheter is inserted into a coronary vessel where high-frequency sound waves reflect off tissue or vessel walls. The reflected waves create a cross-sectional image from within the vessel to aid in visualizing its structure, thereby providing both quantitative and qualitative information on vessel reaction after stenting.

Serial IVUS (immediately post-stenting and 6-month follow-up) was performed in a pre-defined IVUS subset of 100 patients (52 SES in 50 patients; 52 PES in 50 patients). Volumetric IVUS analysis demonstrated significantly less neointimal proliferation in the sirolimus-eluting stent (% neointimal volume: 5.5±11.0 vs. 11.5±9.7, p=0.016), resulting in less late lumen area loss and smaller maximum cross-sectional narrowing (neointimal area/stent area) than PES. In addition, serial IVUS analysis revealed significantly less outward vessel remodeling in the SES than in PES. The incidence of late-acquired incomplete stent apposition (ISA) was similar between the SES and PES. However, SES was associated with less outward vessel remodeling at the ISA segment, possibly suggesting different underlying mechanisms of this phenomenon.

"Our study is the first report investigating the detailed arterial responses to this new DES technology, with a randomized, blinded comparison of sirolimus-eluting stents with paclitaxel-eluting stents in human de novo native coronary lesions," said Dr. Otake.

"The combination of a different formulation strategy with different types of drug appeared to impact arterial response after DES therapy," Dr. Otake added. "Our study confirmed that the advanced formulation strategy of this new DES can perform with efficacy exceeding a first-generation DES with the potential for improved long-term safety because it turns into a bare metal stent within 3 months. This stent may be a promising DES option to treat the patients with coronary artery disease while embracing the long-term safety of bare metal stents."

About CRF and TCT

The Cardiovascular Research Foundation (CRF) is an independent, academically focused nonprofit organization dedicated to improving the survival and quality of life for people with cardiovascular disease through research and education. Since its inception in 1991, CRF has played a major role in realizing dramatic improvements in the lives of countless numbers of patients by establishing the safe use of new technologies and therapies in the subspecialty of interventional cardiology and endovascular medicine.

Transcatheter Cardiovascular Therapeutics (TCT) is the annual scientific symposium of the Cardiovascular Research Foundation. TCT gathers leading medical researchers and clinicians from around the world to present and discuss the latest developments in the field of interventional cardiology and vascular medicine.

Judy Romero | EurekAlert!
Further information:
http://www.crf.org

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>