Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of sirolimus-eluting stent demonstrates superior results

23.09.2009
A new type of sirolimus-eluting stent (SES) successfully showed significantly greater neointimal suppression than the paclitaxel-eluting stent (PES) with greater vessel wall integrity surrounding the stent, confirming the finding of superiority of the SES over the PES stent for the trial's primary endpoint of in-stent late loss.

Results from the RES-ELUTION I Trial on the safety and effectiveness of a new sirolimus-eluting stent in the treatment of coronary artery disease (a single atherosclerotic lesion) in native coronary arteries will be presented at the 21st annual Transcatheter Cardiovascular Therapeutics (TCT) scientific symposium, sponsored by the Cardiovascular Research Foundation (CRF).

RES-ELUTION I, which began in March 2008, is a multi-center, randomized, single-blind controlled trial comparing the sirolimus-eluting reservoir-based stent (SES) with a paclitaxel–eluting stent (PES) system in de novo native coronary artery lesions. A total of 394 subjects were randomized to treatment with either the sirolimus-eluting or paclitaxel-eluting stents. Principal investigators of the trial included Alexandre Abizaid, MD, John Ormiston, MD and Christian Spaulding, MD.

Clinical results will be presented by John A. Spertus, MD on Thursday, September 24 at 2:45 p.m. during the Featured Clinical Trials: First Report Investigations session in Room 131. In addition to the oral presentation, a detailed intravascular ultrasound (IVUS) analysis will be on display as a poster abstract (TCT-360) on Tuesday, September 22 between 8:00 a.m. and 10:00 a.m. in Hall D of The Moscone Center. The poster will be presented by Hiromasa Otake, MD of Stanford University (Stanford, Calif.) on behalf of the RES-ELUTION I investigators.

This new sirolimus-eluting stent (SES) utilizes a reservoir technology that incorporates a number of small wells, each acting as a depot into which drug-polymer compositions are loaded. The stent's design achieves both a significant reduction in total polymer load as well as a reduction in tissue-polymer contact by more than 75% compared to conventional DES in which the entire stent surface is coated with polymer. Its use of a bioresorbable polymer is another theoretical advantage from the safety perspective, allowing the drug-eluting stent to become simple bare metal within the vessel wall approximately 3 months after deployment.

In this clinical trial, detailed arterial responses to the new DES technology were also investigated in vivo using intravascular ultrasound (IVUS). With IVUS, a tiny catheter is inserted into a coronary vessel where high-frequency sound waves reflect off tissue or vessel walls. The reflected waves create a cross-sectional image from within the vessel to aid in visualizing its structure, thereby providing both quantitative and qualitative information on vessel reaction after stenting.

Serial IVUS (immediately post-stenting and 6-month follow-up) was performed in a pre-defined IVUS subset of 100 patients (52 SES in 50 patients; 52 PES in 50 patients). Volumetric IVUS analysis demonstrated significantly less neointimal proliferation in the sirolimus-eluting stent (% neointimal volume: 5.5±11.0 vs. 11.5±9.7, p=0.016), resulting in less late lumen area loss and smaller maximum cross-sectional narrowing (neointimal area/stent area) than PES. In addition, serial IVUS analysis revealed significantly less outward vessel remodeling in the SES than in PES. The incidence of late-acquired incomplete stent apposition (ISA) was similar between the SES and PES. However, SES was associated with less outward vessel remodeling at the ISA segment, possibly suggesting different underlying mechanisms of this phenomenon.

"Our study is the first report investigating the detailed arterial responses to this new DES technology, with a randomized, blinded comparison of sirolimus-eluting stents with paclitaxel-eluting stents in human de novo native coronary lesions," said Dr. Otake.

"The combination of a different formulation strategy with different types of drug appeared to impact arterial response after DES therapy," Dr. Otake added. "Our study confirmed that the advanced formulation strategy of this new DES can perform with efficacy exceeding a first-generation DES with the potential for improved long-term safety because it turns into a bare metal stent within 3 months. This stent may be a promising DES option to treat the patients with coronary artery disease while embracing the long-term safety of bare metal stents."

About CRF and TCT

The Cardiovascular Research Foundation (CRF) is an independent, academically focused nonprofit organization dedicated to improving the survival and quality of life for people with cardiovascular disease through research and education. Since its inception in 1991, CRF has played a major role in realizing dramatic improvements in the lives of countless numbers of patients by establishing the safe use of new technologies and therapies in the subspecialty of interventional cardiology and endovascular medicine.

Transcatheter Cardiovascular Therapeutics (TCT) is the annual scientific symposium of the Cardiovascular Research Foundation. TCT gathers leading medical researchers and clinicians from around the world to present and discuss the latest developments in the field of interventional cardiology and vascular medicine.

Judy Romero | EurekAlert!
Further information:
http://www.crf.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>