Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of sirolimus-eluting stent demonstrates superior results

23.09.2009
A new type of sirolimus-eluting stent (SES) successfully showed significantly greater neointimal suppression than the paclitaxel-eluting stent (PES) with greater vessel wall integrity surrounding the stent, confirming the finding of superiority of the SES over the PES stent for the trial's primary endpoint of in-stent late loss.

Results from the RES-ELUTION I Trial on the safety and effectiveness of a new sirolimus-eluting stent in the treatment of coronary artery disease (a single atherosclerotic lesion) in native coronary arteries will be presented at the 21st annual Transcatheter Cardiovascular Therapeutics (TCT) scientific symposium, sponsored by the Cardiovascular Research Foundation (CRF).

RES-ELUTION I, which began in March 2008, is a multi-center, randomized, single-blind controlled trial comparing the sirolimus-eluting reservoir-based stent (SES) with a paclitaxel–eluting stent (PES) system in de novo native coronary artery lesions. A total of 394 subjects were randomized to treatment with either the sirolimus-eluting or paclitaxel-eluting stents. Principal investigators of the trial included Alexandre Abizaid, MD, John Ormiston, MD and Christian Spaulding, MD.

Clinical results will be presented by John A. Spertus, MD on Thursday, September 24 at 2:45 p.m. during the Featured Clinical Trials: First Report Investigations session in Room 131. In addition to the oral presentation, a detailed intravascular ultrasound (IVUS) analysis will be on display as a poster abstract (TCT-360) on Tuesday, September 22 between 8:00 a.m. and 10:00 a.m. in Hall D of The Moscone Center. The poster will be presented by Hiromasa Otake, MD of Stanford University (Stanford, Calif.) on behalf of the RES-ELUTION I investigators.

This new sirolimus-eluting stent (SES) utilizes a reservoir technology that incorporates a number of small wells, each acting as a depot into which drug-polymer compositions are loaded. The stent's design achieves both a significant reduction in total polymer load as well as a reduction in tissue-polymer contact by more than 75% compared to conventional DES in which the entire stent surface is coated with polymer. Its use of a bioresorbable polymer is another theoretical advantage from the safety perspective, allowing the drug-eluting stent to become simple bare metal within the vessel wall approximately 3 months after deployment.

In this clinical trial, detailed arterial responses to the new DES technology were also investigated in vivo using intravascular ultrasound (IVUS). With IVUS, a tiny catheter is inserted into a coronary vessel where high-frequency sound waves reflect off tissue or vessel walls. The reflected waves create a cross-sectional image from within the vessel to aid in visualizing its structure, thereby providing both quantitative and qualitative information on vessel reaction after stenting.

Serial IVUS (immediately post-stenting and 6-month follow-up) was performed in a pre-defined IVUS subset of 100 patients (52 SES in 50 patients; 52 PES in 50 patients). Volumetric IVUS analysis demonstrated significantly less neointimal proliferation in the sirolimus-eluting stent (% neointimal volume: 5.5±11.0 vs. 11.5±9.7, p=0.016), resulting in less late lumen area loss and smaller maximum cross-sectional narrowing (neointimal area/stent area) than PES. In addition, serial IVUS analysis revealed significantly less outward vessel remodeling in the SES than in PES. The incidence of late-acquired incomplete stent apposition (ISA) was similar between the SES and PES. However, SES was associated with less outward vessel remodeling at the ISA segment, possibly suggesting different underlying mechanisms of this phenomenon.

"Our study is the first report investigating the detailed arterial responses to this new DES technology, with a randomized, blinded comparison of sirolimus-eluting stents with paclitaxel-eluting stents in human de novo native coronary lesions," said Dr. Otake.

"The combination of a different formulation strategy with different types of drug appeared to impact arterial response after DES therapy," Dr. Otake added. "Our study confirmed that the advanced formulation strategy of this new DES can perform with efficacy exceeding a first-generation DES with the potential for improved long-term safety because it turns into a bare metal stent within 3 months. This stent may be a promising DES option to treat the patients with coronary artery disease while embracing the long-term safety of bare metal stents."

About CRF and TCT

The Cardiovascular Research Foundation (CRF) is an independent, academically focused nonprofit organization dedicated to improving the survival and quality of life for people with cardiovascular disease through research and education. Since its inception in 1991, CRF has played a major role in realizing dramatic improvements in the lives of countless numbers of patients by establishing the safe use of new technologies and therapies in the subspecialty of interventional cardiology and endovascular medicine.

Transcatheter Cardiovascular Therapeutics (TCT) is the annual scientific symposium of the Cardiovascular Research Foundation. TCT gathers leading medical researchers and clinicians from around the world to present and discuss the latest developments in the field of interventional cardiology and vascular medicine.

Judy Romero | EurekAlert!
Further information:
http://www.crf.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>