Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tweaking gene expression to repair lungs

26.02.2013
Lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) are on the rise, according to the American Lung Association and the National Institutes of Health.

These ailments are chronic, affect the small airways of the lung, and are thought to involve an injury-repair cycle that leads to the breakdown of normal airway structure and function. For now, drugs for COPD treat only the symptoms.


This graphic shows the expression of the important transcription factor Sox2 (green staining and outlined with dashed line) in the airway epithelium of control mouse lung airways (A). Loss of Hdac1/2 expression leads to loss of Sox2 expression in Hdac1/2 double knockout animals (B).

Credit: Ed Morrisey, Ph.D., Perelman School of Medicine, University of Pennsylvania.

"A healthy lung has some capacity to regenerate itself like the liver," notes Ed Morrisey, Ph.D., professor of Medicine and Cell and Developmental Biology and the scientific director of the Penn Institute for Regenerative Medicine in the Perelman School of Medicine, University of Pennsylvania. "In COPD, these reparative mechanisms fail."

Morrisey is looking at how epigenetics controls lung repair and regeneration. Epigenetics involves chemical modifications to DNA and its supporting proteins that affect gene expression. Previous studies found that smokers with COPD had the most significant decrease in one of the enzymes controlling these modifications, called HDAC2.

"HDAC therapies may be useful for COPD, as well as other airway diseases," he explains. "The levels of HDAC2 expression and its activity are greatly reduced in COPD patients. We believe that decreased HDAC activity may impair the ability of the lung epithelium to regenerate."

Using genetic and pharmacological approaches, they showed that development of progenitor cells in the lung is specifically regulated by the combined function of two highly related HDACs, HDAC/1 and /2. Morrisey and colleagues published their findings in this week's issue of Developmental Cell.

By studying how HDAC activity, as well as other epigenetic regulators, controls lung development and regeneration, they hope to develop new therapies to alleviate the unmet needs of patients with asthma and COPD.

HDAC1/2 deficiency leads to a loss of expression of the key transcription factor, a protein called Sox2, which in turn leads to a block in airway epithelial cell development. This is affected in part by deactivating a repressor of expression (derepressing) of two other proteins, Bmp4 and the tumor suppressor Rb1 - targets of HDAC1/2.

In the adult lung, loss of HDAC1/2 leads primarily to increased expression of inhibitors of cell proliferation including the proteins Rb1, p16, and p21. This results in decreased epithelial proliferation in lung injury and inhibition of regeneration.

Together, these data support a critical role for HDAC-mediated mechanisms in regulating both development and regeneration of lung tissue. Since HDAC inhibitors and activators are currently in clinical trials for other diseases, including cancer, such compounds could be tested in the future for efficacy in COPD, acute lung injury, and other lung diseases that involve defective repair and regeneration, says Morrisey.

This work was funded by the National Heart, Lung and Blood Institute (HL071589, HL087825, HL100405, HL110942) and the Lung Repair and Regeneration consortium, funded by the NHLBI.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>